
204 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 2/2025

1. Szymon WRÓBEL, 2. Krzysztof KĘPA

Wroclaw University of Science and Technology
ORCID: 1. 0009-0009-0112-4092; 2. 0000-0003-0702-9570

doi:10.15199/48.2025.02.46

FIRV: A language-based control flow integrity protection
for RISC-V architectures

Abstract. Side-channel and fault-injection attacks using e.g. EM/laser pulse, power glitching are a major concern in the context of embedded systems,
IoT devices, and cloud security. The Software-implemented Hardware-fault Tolerance (SIHFT) countermeasures are the main approach to hardening
the systems built using Commercial Off-the-Shelf (COTS) components, in which modification of hardware is not feasible. The research presented in
this article is focused on an open-source solution to language-based, compile-time application of SIHFT countermeasures. The proof-of-concept
implementation is based on the LLVM compiler framework and demonstrates using Rust language frontend, allowing the use of other compiler features,
like optimisation passes and support for multiple target platforms. The results of the research are publicly available in GitHub repository.

Streszczenie. Ataki kanałem pobocznym I wstrzykiwanie błędów przy użyciu impulsu elektromagnetycznego/laserowego, lub usterki zasilania,
stanowią poważny problem w kontekście systemów wbudowanych, urządzeń IoT i bezpieczeństwa w chmurze. Implementowane programowo środki
zaradcze Hardware-Fault Tolerance (SIHFT) są głównym podejściem do utwardzania systemów zbudowanych przy użyciu komercyjnych
komponentów, w których modyfikacja sprzętu nie jest możliwa. Badania przedstawione w tym artykule koncentrują się na otwarto-zródłowym
językowym rozwiązaniu stosowanym w czasie kompilacji. Implementacja prototypu jest oparta na projekcie modularnego kompilatora LLVM i
demonstruje użycie kompilatora dla języka Rust, co pozwala na korzystanie z innych funkcji kompilatora, takich jak przebiegi optymalizacyjne i obsługa
wielu platform docelowych. Wyniki badań są publicznie dostępne w repozytorium GitHub. (FIRV: oparta na języku ochrona integralności przepływu
sterowania dla architektur RISC-V)

Keywords: compilation, fault injection, language countermeasures, LLVM, RISC-V, Rust.
Słowa kluczowe: kompilacja, wstrzykiwanie błędów, środki zaradcze języka, LLVM, RISC-V, Rust.

Introduction
Modern Operational Technology (OT) systems like

industry and avionics controllers, IOT devices, and
embedded systems in general, are increasingly complex
solutions of software layers forming a software stack, and
many interconnected physical components, the hardware.
While software-level attacks focus on exploiting
vulnerabilities and inconsistencies in the abstract logic model
of computing the hardware-level attacks target directly the
very physical structure of the device to observe or tamper
with the information that is stored in form of energy in
registers or passed through the device internal buses or
interfaces.

The side-channel attacks like EM/laser pulse or power
glitching are a family of hardware attacks, focusing on the
exploitation of the hardware by observing and/or altering the
physical state of the device, rather than exploiting the
algorithmic or hardware vulnerabilities. The side-channel
analysis can be performed using a variety of methods,
including timing [1], power consumption [2], electromagnetic
emanation [3], or temperature characteristics [4].

The fault-injection attacks (also known as glitching), are
a type of active side-channel attacks, where through altering
the state of the device, an adversary is attempting to alter the
outcome of the program, for example: skipping key
verification, accepting unsigned code, modifying data. Fault
injection can be performed using many methods, from
electromagnetic impulse [5], to alteration of the power supply
voltage [6] or laser light [7].

Side-channel analysis and fault-injection attacks are a
major concern in several branches of software and hardware
security, including embedded systems, IoT device
development, and cloud platforms.

The Software-implemented Hardware-fault Tolerance
(SIHFT) countermeasures are the preferred, and often the
only possible method of hardening the device against fault-
injection attacks, when using the Commercial Off-the-Shelf
(COTS) components, where modification of the underlying
hardware is not feasible [8].

The countermeasures currently used in the industry very
often require manual application on the source or binary

level. The former approach entails a need for disabling the
compiler optimisations or insertions of artificial code
fragments, effectively preventing compilers from optimising
away the countermeasures, while the latter requires a deep
understanding of target architecture and results in a high
coupling, likely leading to increasingly complex development
process and requires highly trained and specialised software
engineers [9], [10].

The main goal of this work is to improve the firmware
development workflow by providing a proof-of-concept
solution for applying the countermeasures by specifying a
simple attribute/pragma in the source code, which the
compiler can then use to apply required countermeasures.

Side-channel attacks and fault injection

Side-channel attacks are a class of attacks focused on
the exploitation of physical properties of the target system,
allowing for leaking some information on the conducted
computations through unintended channels (electromagnetic
field, temperature, power consumption, etc.) rather than
through direct vulnerability of the system.

Side-channel analysis stems from research on the
security of cryptographic protocols, where leaking even a
small amount of information can lead the adversary to gain
advantage and can compromise the security of the system.
It is important to note that side-channel analysis focuses
mostly on the particular implementation of the protocol,
usually on a specific hardware.

Fault-injection (FI) attacks are separate, but closely
related branch of attacks. Their core component is to focus
on exploiting the physical characteristics of the hardware, for
example, altering the power supply voltage or changing
temperature, to introduce a change in the system. It is usually
extremely hard to explain the exact process leading to the
change, but the observed behavioural change can be similar
to, for example, instruction skips or data alteration. Fault
injection models can also be effective when designing
solutions for harsh environments, like aerospace, defence, or
critical infrastructure (e.g. nuclear power plants), where the
increased radiation levels can lead to spontaneous faults.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 2/2025 205

The main difference between side-channel analysis and
fault-injection attacks is that the former is focused on the
passive or semi-passive observation of the operation of the
system, while the latter consists of performing very invasive
actions on the system. Some resources classify fault
injection attacks as a branch of side-channel analysis [11],
[12].

The history of side-channel analysis comes from the
papers by Kocher [1] and Kocher et al. [2], where timing
attacks and differential power analysis methods were used to
retrieve partial information or a whole secret key based on
side-channel knowledge. An extensive survey of fault
injection attacks and software and hardware
countermeasures was presented in the report by Bar-El et al.
[13].

The primary sources of side-channel information come
from both unintentional sources (electromagnetic emanation,
power consumption, timing) and intentional sources (memory
footprint, sensor usage, data consumption) [12].

Originally, side-channel attacks relied on physical access
to the analysed device, but the recent growth of multi-tenant
cloud architectures opened a new area of research, where
side-channel information can be leaked despite the logical
separation of the computations, for example, power-
consumption analysis in the FPGA accelerators [14] or
remote exploitation of power management mechanisms [15].

RISC-V architecture and LLVM compiler framework

The research presented in this work is focused on, but
not limited to, RISC-V architecture. The choice of RISC-V as
the architecture of focus is motivated by the increasing
popularity and impact of RISC-V-based processors and
relatively small amount of research regarding side-channel
and fault-injection attacks in RISC-V architectures. A
description of the architecture and the design considerations
can be found in [16]. The full specification of the ISA can be
found in [17]. The approach selected to demonstrate results
of the research was QEMU [18], due to prior knowledge of
the platform by the author, broad documentation, and
community support.

LLVM is a project containing tools and libraries that can
be used to build highly optimised and robust compilers and
language toolchains [19], [20]. The backbone of the project
is LLVM IR, an intermediate representation that is designed
to be a portable, high-level assembly [21].

The standard architecture of the compiler consists of
three main blocks: frontend, optimiser, and backend. The
frontend performs tasks connected with the syntax and
semantics of the input language: lexical analysis, syntax
analysis (parsing) and semantic analysis. The optimiser step
can perform machine-independent optimisations, for
example, constant propagation or dead code elimination.
The backend step consists of target-specific optimisations,
like instruction scheduling, replacing instructions with faster
ones [22].

Compilers built using the LLVM provide a high degree of
freedom and robustness with regard to input language and
target architectures, thanks to the decoupling of the three
aforementioned steps. The language-specific frontends, that
emit LLVM IR, can use the same optimisation pipeline. The
target-specific backend, can then process the IR and perform
machine-specific operations. The flow diagram of the
process is shown in figure 1.

Related work on fault-injection countermeasures

The two main categories of fault-injection
countermeasures are fault resilience, stemming from the
research on the reliability and robustness of software and

hardware solutions, and fault detection, which is used mostly
in security research.

The main approach to the fault resiliency problem is the
introduction of redundancy. The most common is the
instruction-level redundancy presented in, for example, the
paper by Moro et al. [23], where the instruction-level
redundancy approach for ARM Thumb-2 was formally
verified. An important notion in the context of instruction
redundancy is the idempotency of the instruction, meaning
executing the instruction twice leads to the same machine
state. The instruction-level redundancy approach has been
presented and improved in various papers, e.g. Barry et al.
proposed in [24] a LLVM-based solution of application of the
redundancy, improving on the assembly-based method of
Moro et al., and Chen et al. [25] proposed usage of the SIMD
instructions to achieve the redundancy with reduced
performance overhead.

In article [26], Schilling et al. proposed a variety of
countermeasures in the context of control-flow integrity and
stateful CFI branching. The article mentions implementation
based on the LLVM project, but no publicly available
implementation is available.

The article by Oh et al. [27] introduced Error Detection by
Duplicated Instructions (EDDI), where the instruction-level
redundancy is augmented with the result checks. In the
article by Reis et al. [28], there has been presented the usage
countermeasures (EDDI, Error Correcting Codes, Extended
Control Flow checks).

The article by Richter-Brockmann et al. [29] presents a
universal framework for verification of the (primarily
hardware) fault-injection countermeasures.

Finally, a very recent report by the German Federal Office
for Information Security [10] provides a survey on the topic of
hardware fault attacks on microcontrollers, classification, and
survey on the software and hardware countermeasures.

Currently implemented solutions
The manual implementations of the countermeasures

have been applied in various projects. Some of the open-
source examples include:
* wolfSSL - the procedures regarding verification of
signatures used in the boot process are manually hardened
by using platform-specific assembly [30],
 * OpenTitan [31] - implementation of platform-specific
''laundering'' and barrier primitives, which prevent the
compiler from tracking the connections of the value to other
values in context, and therefore optimising the hardened
code away,
* MCUboot [32] - implementation of various
countermeasures, e.g. global fragile call counter, conversion
of integers to pair (value, value xor mask).

One of the automated approaches to the application of
countermeasures via binary rewriting was presented in the
paper by Kiaei et al. [9], where the compiled application is
disassembled and using the faulter-patcher framework the
countermeasures are applied to places, where the faulter has
managed to alter the outcome of the program.

The language and intermediate-level approaches have
been implemented in various projects, one of the most widely
known is the Cogito project [33] that is built on top of the
LLVM toolchain. The research on the project led to
publication of many papers (e.g. mentioned earlier work by

Fig.1. Frontend-optimiser-backend LLVM architecture

206 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 2/2025

Barry et al. [24]), but the source code and resulting tools are
not released.

One of the most complete and publicly available tools is
CompaSeC project [34], in which various countermeasures
(i.a. EDDI, SWIFT, RASM [35]) can be applied by the LLVM
passes. When compared to the solution presented here the
main differences is focus on the low-level (machine-
dependent) transformations and the use of external
configuration files or command-line arguments to specify the
scope of application of the countermeasures.

Fault model, solution design and implementation

An important design consideration, that needs to be
carefully thought through, is the threat/fault model. The
internal mechanisms of the fault injection attacks are very
difficult to research and understand [36], [13], [37], but
outcomes observed can be, i.e. single/multiple instruction
skip, bit flip, random byte, or permanent fault.

The fault model assumed in this project is the single
instruction skip, as it’s one of the most often observed
outcomes in electromagnetic fault-injection and voltage
glitching attacks [23].

The solution presented in this work consists of two main
parts: modification of the LLVM and extending the Rust
frontend to allow specifying the components requiring
hardening. The LLVM modification can also be used as a
standalone tool, e.g., when using another front-end
language.
 LLVM Pipeline - to successfully implement the automatic
countermeasure instrumentation, it is imperative to select a
proper place to insert the transformation. The general
architecture of the LLVM backend from previous section
could be split into lower-level components. Figure 2 presents
is a more granular view of the pipeline. The middle-end
consists of the machine-independent optimizations and code
generation unit, which emits MIR -- the machine intermediate
representation, which is a high-level SSA representation of
the target assembly. The backend is built from the machine-
dependent optimization and the final assembly emission unit.

 LLVM Passes - the structure of the pipeline can be
inspected on an even lower level (figure 3). The optimization
passes, are general optimizations, that are part of the LLVM
Optimization Pipeline (opt tool). The code related to those
passes can be found in Analysis, Transforms folders. The

CodeGen part of the pipeline consists of the target-
independent IR passes, the preISel passes and the target-
independent machine passes (working on MIR). The
instruction selection is the pipeline step, where the LLVM IR
is transformed into the MIR. After that, the machine-
dependent passes are executed (e.g. register allocation).

The last step of the pipeline is the materialization of the MIR
into the target machine assembly.

 Modification of Rust - majority of the changes required
for the Rust language are connected with updating the
underlying LLVM project, as well as allowing propagation of
the required attributes.
Rust language allows using two kinds of attribute: inner and
outer. The former applies to the element it was defined inside
of (function, crate), while the latter is applied to the next
element. Example of attribute usage is presented in figure 4.

The approach implemented in this work provides
function-level redundancy. The motivations for selecting

such countermeasure are: simplicity of implementation,
medium additional memory (2 return value slots and double
redundancy of input parameters, that could be further
reduced) and computational overhead (double execution of
computed function and several load/store and comparison
instructions).

The countermeasure works by inserting the Prologue,
Interlude, Epilogue, and Failure blocks and clone of the
function body. The general diagram for the countermeasure
operation is presented in figure 5. The Prologue block
contains an allocation of the memory for the return values
and the function parameters for the first execution. The
copying of function parameters is necessary, as functions
can modify their parameters. After the allocation steps, the
parameters are then copied to the proper slots, and the
execution of the function body can start. The Interlude block
is responsible for storing the return value of the first
execution, and allocation of memory for parameters for the
second execution, and copying them. The Epilogue block
handles the return value from the second execution, retrieves
the result of the first computation, and only if those values

match, returns, or else the Failure block is executed, which
is the block responsible for handling the error.

The important step prior to implementation is to select the
list of assumptions. The most important ones are:

Fig.3. LLVM Pass within pipeline

Fig.4. Example attribute usage

Fig.5. Application of the proposed hardening countermeasure

Fig.2. LLVM pipeline

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 2/2025 207

* Hardening only pure functions -- the hardened function
cannot have any side effects. The situation of applying the
hardening to impure function is an undefined behaviour.
* Supported types -- Due to the limited scope of the project,
only support for integer and floating-point types is
implemented.

The process of implementation requires making changes
in a few places across the project. All the paths mentioned
later are relative to the llvm catalogue in the root folder, which
contains the code of the core LLVM tools and libraries.

Modifying the LLVM IR - the first step of implementation
is the modification of the LLVM IR, which allows specifying
the attribute on a function. The selected attribute name was
firv_harden (The project was named FIRV, Fault Injection in
RISC-V).

Introduction of the attribute - the LLVM attributes are
defined in the include/llvm/IR/Attributes.td file. The following
definition was added:

def FirvHarden: EnumAttr<"firv_harden", [FnAttr]>;

The meaning of the statement is: define FirvHarden to

derive from the EnumAttr subclass; the tag is firv_harden and
it's a function attribute.

Adding the bitcode identifier - it's required to specify the

bitcode identifier for the attribute. It's done in the
include/llvm/Bitcode/LLVMBitCodes.h header file. The
AttributeKindCodes enum should be extended with the
desired attribute id:

enum AttributeKindCodes {

 ...

 ATTR_KIND_FIRV_HARDEN = 100,

…};

Handling the miscellaneous operations - the former

changes entail a need to implement the handling cases in a
couple of spots: bitcode reader, bitcode writer, and code
extractor.

The required changes are: adding a case for the attribute
in BitcodeReader.cpp, in the getAttrFromCode function,
updating the getAttrKindEncoding function of
BitcodeWriter.cpp module, and changing the function
constructFunction in the CodeExtractor.cpp module. The last
function is responsible for the extraction of the code
fragments and placing them in a new function. The required
change comes from the need to specify whether the attribute
can or should not be added to the newly extracted function.
In the case of this attribute, it's imperative to propagate it.

Attaching the Pass - before implementing the pass, it is
required to select the type of the pass (Module or Function)
and its placement in the pipeline. According to the LLVM
documentation Function passes are required to satisfy 2
conditions:
* Optimization (or transformations) are organized globally,
i.e. one function at a time.
* The pass doesn't cause the addition or removal of any
functions in the module.

As both of those conditions are satisfied in the case of the
transformation being added, hence the FunctionPass can be
used.

Selection of the place in the pipeline offers following
choices: optimization pass (Analysis/Transform), CodeGen
pass, Target-specific pass.

Creating the header file - the first step of attaching the
pass is the creation of the header file for the pass --
FirvHarden.h. The header is the place, where usually the
declarations of the functions and classes are taking place.

The minimal declaration of a functional FunctionPass
requires specification of the pass ID, constructor and an
overridden runOnFunction method.

Pass initializations - to use countermeasure pass, it is
required to provide hooks allowing the creation and
initialization of the pass. The former is declared in the
Passes.h header:

FunctionPass *createFirvHardenPass();

The latter is declared in the InitializePasses.h header:

void initializeFirvHardenPass(PassRegistry&);

Pass registration - before the pass can be used in

LLVM, it needs to be registered in the LLVM's pass manager.
The chosen pipeline placement is in the preISel block (see
figure 3). Due to the pass not being an optimization pass, but
exactly the opposite, it's executed in the latest moment
possible. This allows all previous optimizations to work, while
ensuring the countermeasure instrumentation is not affected
by them. The pass registrations for the CodeGen step are
happening in Target\-Pass\-Config. This class is the base
class for the target-specific pass config, and the targets can
override the specified methods (customary, still calling the
base version of the method, but not required to). The pass is
added in the addISelPrepare method, which is executed just
before the Instruction Selection process. Due to the gradual
introduction of the new Pass Manager [38], it's advised to
prepare for the eventual transition. Similarly to the legacy
pass manager, the pass is registered in the ISel Prepare
step, which is the last step before the Instruction Selection
step.

Implementing the Pass - the implementation of the pass
is done in the FirvHarden.cpp. For the file to be compiled and
linked into the library it needs to be added to CMakeLists.txt.
The first part of the file consists of the required definitions,
initialisation, and creation of the supplemental classes.

The main method for the pass runOnFunction() is
presented in Appendix 1. The return value of that function
indicates if the function has been modified in any way. The
checks in lines 2 and 7 verify if the transformation should be
performed on the function -- is the attribute present and if the
function return type is supported, respectively.

After that, the actual transformation steps are executed:
adding store/load for arguments (line 13), cloning of the
function body (line 17), creation of prologue (line 21),
creation of fail block (line 23) and return pad block (line 24),
creation of epilogue (line 26) and interlude (line 32), and
finally replacing the return instructions to storing the result in
the respective slot and jump to next block (lines 34, 35). Full
implementation of the pass can be found in the repository
firv-llvm-project (see section Code Repositories).

Results

The test function used to evaluate the countermeasure
efficacy is presented in the figure 6. The test cases were
prepared by creating a base file (src/res.rs), and then
creating a copy (src/harden.rs) with the firv_harden attribute

Fig.6. Countermeasure evaluation source file

208 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 2/2025

applied to the function. The code can be executed using the
make rust-asm command, with the RUSTC and SRC
arguments passed (make rust-asm RUSTC=... SRC=...).

The comparison of the resulting assembly of unhardened
and hardened cases are presented in figure 7 and figure 8.
Lines 2-5 are responsible for setting up the stack frame. In
lines 6-13, the arguments for the first execution are prepared,
and lines 14-17 are responsible for execution of the
computation and storing the result. Lines 18-25 are
responsible for setting up the arguments for the second
execution, performed in lines 26-29. In lines 30-32, the
results of the computations are compared. The block
.LBB1_1 (line 33) is the failure block, consisting of the
instruction unimpl, causing the hardware interrupt. Lines 37-
39 perform secondary comparison of the results. Lines 40-46
are responsible for preparing the return value and cleaning
up the stack.

 Code repositories - The code and implementation of the
proposed solution can be found in the FIRV project public
GitHub repository [39] which is a fork of the official LLVM
project with the changes described in this chapter. The
solution was also incorporated in the fork of the Rust
language. Rust project uses its specific LLVM fork. All above
and the supporting code: e.g. the scripts for building and
running the RISC-V code in the QEMU simulator are also
placed in the public GitHub repository of the FIRV project.

Conclusions and future work

This project demonstrates a proof-of-concept automated
countermeasure to fault-injection attacks by applying the
theoretical protection method to a widely used compiler
toolchain. The research is mainly focused on the RISC-V
architecture, but because of the relative similarity of the other
RISC architectures, the results of the research can be
applied to other hardware targets like x86 or ARM.

The application of the Software-Implemented Hardware
Fault Tolerance (SIHFT) countermeasures is a very
influential approach in hardening devices against fault-
injection attacks (like EM/laser pulse, power glitching),

especially in the case of COTS devices, where the
modification of the hardware device is not feasible.

The proposed approach of function-level redundancy is a
countermeasure allowing for the detection of a single fault.
Function-level redundancy is a high-level solution, in the
sense that it is not tied to specific platform details, so the
proposed approach could be used (perhaps with minor
adjustments) in other architectures like ARM or MIPS, or
even in a CISC architecture like x86. The successfully
implemented solution provides a general framework for the
introduction of additional fault injection countermeasures.

The implementation, supporting files, and scripts have
been published in the GitHub repositories and are made
public which allows the implementation of other
countermeasures in the future and presents an opportunity
for further development of the project.

In this section, there are presented the topics that show
future work could address the following research paths aiding
in further development of the FIRV project; the first path to
focus on was the integration with the frontends of the
compilers. The most important parts of the hardening are
happening in the optimisation pipeline and target-specific
backend, while the frontend code is only responsible for
passing the attributes in a format that will be understood by
the LLVM pipeline. The second path is surveying the topic
under different fault models, e.g. multiple skips or bit-flipping.
Another related avenue of research, could be the
implementation of additional side-channel attack protection
mechanisms, for example, hardening against timing attacks,
advanced CFI protection methods, or instruction-level
redundancy methods. The goal of this work was to provide a
proof-of-concept of the implementation of instrumentation for
the selected solution and to provide a survey on the approach
and possible pitfalls in implementing such solutions.

Last, but not least, an important feature for potential
industrial usage would be implementing support for complex
return types, like structures or tuples. Such types are widely
used in languages like Rust or C++.

Authors: mgr inż. Szymon Wróbel, Wydział Informatyki i
Telekomunikacji, Katedra Podstaw Informatyki, ul. Janiszewskiego
11/17, 50-372 Wrocław, E-mail: Szymon.Wrobel@pwr.edu.pl;
dr inż. Krzysztof Kępa, Politechnika Wrocławska, Wydział
Informatyki i Telekomunikacji, Katedra Telekomunikacji i
Teleinformatyki, ul. Janiszewskiego 11/17, 50-372 Wrocław, E-mail:
Krzysztof.Kepa@pwr.edu.pl;.

REFERENCES
[1] Kocher P.C., Timing attacks on implementations of diffie-hellman,

rsa, dss, and other systems, Koblitz, N. (ed.) Advances in
Cryptology — CRYPTO ’96, (1996), 104–113

[2] Kocher P., Jaffe J., Jun B., Differential power analysis, Wiener,
M.(ed.) Advances in Cryptology - CRYPTO’ 99, (1999), 388–397

[3] Genkin D., et al., Ecdsa key extraction from mobile devices via
nonintrusive physical side channels, Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, CCS’16 (2016), 1626–1638

[4] Kim T., Shin Y., Thermalbleed: A practical thermal side-channel
attack, IEEE Access 10, (2022), 25718–25731

[5] Kühnapfel N., et al., Em-fault it yourself: Building a replicable emfi
setup for desktop and server hardware, In 2022 IEEE Physical
Assurance and Inspection of Electronics (PAINE), (2022), 1-7

[6] Gomina K., et al., Power supply glitch attacks: Design and
evaluation of detection circuits, in 2014 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST),
(2014) 136–141

[7] Krachenfels T., et al., Evaluation of low-cost thermal laser
stimulation for data extraction and key readout, J. Hardw. Syst.
Secur. 4(1) (2020), 24–33

[8] Solanki S., Kaur M., Design and verification of fault tolerance ip
core using sihft technique, In 2017 International Conference on
Current Trends in Computer, Electrical, Electronics and
Communication (CTCEEC), (2017), 860–863

Fig.7. Generic (non-hardened) test function

Fig.8. Hardened test function

mailto:szymon.wrobel@pwr.edu.pl
mailto:krzysztof.kepa@pwr.edu.pl

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 2/2025 209

[9] Kiaei P., Breunesse C.B., Ahmadi M., Schaumont P.,
Woudenberg J.v., Rewrite to reinforce: Rewriting the binary to
apply countermeasures against fault injection, 58th ACM/IEEE
Design Automation Conference (DAC), (2021), 319–324

[10] BSI, A study on hardware attacks against microcontrollers,
Tech. rep., BSI (2023)

[11] Standaert F.X., Introduction to Side-Channel Attacks, Springer
US, (2010), 27–42

[12] Spreitzer R., et al., Systematic classification of side-channel
attacks: A case study for mobile devices, IEEE Communications
Surveys & Tutorials, 20(1) (2018), 465–488

[13] Bar-El H., et al., The sorcerer’s apprentice guide to fault attacks,
Proc. of the IEEE, 94(2) (2006), 370–382

[14] Gravellier J., et al., High-speed ring oscillator based sensors for
remote side-channel attacks on fpgas, In 2019 International
Conference on ReConFigurable Computing and FPGAs
(ReConFig), (2019), 1–8

[15] Tang A., Sethumadhavan S., Stolfo S.J.: CLKSCREW: exposing
the perils of security-oblivious energy management, In Kirda, E.,
Ristenpart, T. (eds.) 26th USENIX Security Symposium,
USENIX Security 2017, USENIX Association (2017), 1057–1074

[16] Patterson D.A., Hennessy J.L., Computer Organization and
Design RISC-V Edition: The Hardware Software Interface,
Morgan Kaufmann Publishers Inc., (2017)

[17] Waterman A., Asanović K., The RISC-V Instruction Set Manual,
Volume I: User-Level ISA, Document Version 20191213. Tech.
rep., RISC-V Foundation, (2019)

[18] QEMU project, source code repository,
https://github.com/qemu/qemu (accessed 2023).

[19] Apple, developer tools (snapshot from 23.04.2011).
https://web.archive.org/web/20110423095129/https://developer
.apple.com/technologies/tools/

[20] LLVM users, https://llvm.org/Users.html, (2022)
[21] LLVM project. https://www.llvm.org/, (2022)

[22] Aho A.V., et al., Compilers: Principles, Techniques, and Tools

(2nd Edition). Addison-Wesley Longman Publishing Co., (2006)
[23] Moro N., et al., Formal verification of a software countermeasure

against instruction skip attacks, Journal of Cryptographic
Engineering, 4(3) (2014), 145–156

[24] Barry T., Couroussé D., Robisson B., Compilation of a
countermeasure against instruction-skip fault attacks, In
Proceedings of the Third Workshop on Cryptography and
Security in Computing Systems, CS2’16, Association for
Computing Machinery (2016), 1–6

[25] Chen Z., et al., A compiler approach to mitigate fault attacks via
enhanced simdization, In 2017 Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC) (2017), 57–64

[26] Schilling R., Werner M., Mangard S., Securing conditional
branches in the presence of fault attacks, In 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE).
(2018), 1586–1591

[27] Oh N., Shirvani P., McCluskey E., Error detection by duplicated
instructions in super-scalar processors, IEEE Transactions on
Reliability, 51(1) (2002), 63–75

[28] Reis G., et al., Swift: software implemented fault tolerance, In
International Symposium on Code Generation and Optimization,
(2005), 243–254

[29] Richter-Brockmann J., et al., Fiver - robust verification of
countermeasures against fault injections, IACR Trans. on
Cryptographic Hardware and Embedded Sys., (2021), 447–473

[30] wolfSSL: Secure boot and glitching attacks,
https://www.wolfssl.com/secure-boot-glitching-attacks/, (2022)

[31] lowRISC, OpenTitan, code repository
https://github.com/lowRISC/opentitan, (accessed 2023)

[32] https://github.com/mcu-tools/mcuboot, (accessed 2023)

[33] COGITO, project COGITO ANR-13-INSE-0006-01,
http://www.cogito-anr.fr, (accessed 2023)

[34] Geier J., et al., CompaSeC: A compiler-assisted security
countermeasure to address instruction skip fault attacks on
RISC-V, In 2023 28th Asia and South Pacific Design Automation
Conference (ASP-DAC), (2023), 1–7

[35] Vankeirsbilck J., et al., Random additive signature monitoring
for control flow error detection, IEEE Transactions on Reliability
66(4) (2017), 1178–1192

[36] Dumont M., Lisart M., Maurine P., Electromagnetic fault
injection: How faults occur, In 2019 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FTDC), (2019), 9-16

[37] Breier J., Hou X., How practical are fault injection attacks, really?
IEEE Access, 10 (2022), 113122–113130

[38] Eubanks A., The New Pass Manager,
https://blog.llvm.org/posts/2021-03-26-the-new-pass-manager/,
(2021)

[39] Wróbel Sz., Project FIRV, (2023), https://github.com/firv-comp

Appendix 1: Main function of the implemented pass

1 bool FirvHarden::runOnFunction(Function &Fn) {
2 if (! Fn.hasFnAttribute(Attribute::FirvHarden)) {
3 return false;
4 }
5
6 Type * RetType = Fn.getReturnType();
7 if (! isH arden ingSupportedForType (RetType)) {

8 errs () << " Firv ␣ Hardening ␣ is ␣ not ␣ supported ␣

for ␣type ␣ " << * RetType << " \ n ";

9
10 return false;
11 }
12
13 StoreArgsAndLoad(Fn) ;
14
15 std::vector<BasicBlock*> OriginalBBs ;
16 std::vector<BasicBlock*> ClonedBBs ;
17 CloneBasicBlocks(Fn, OriginalBBs, ClonedBBs);
18
19 AllocaInst * FirvAI1 = nullptr;
20 AllocaInst * FirvAI2 = nullptr;
21 CreateFirvPrologue(Fn, FirvAI1, FirvAI2) ;
22
23 BasicBlock * FailBB = CreateFailBB(Fn);
24 BasicBlock * ReturnBB = CreateReturnBB(Fn,FirvAI1, FirvAI2);
25
26 auto EpilogueBB = CreateFirvEpilogue(Fn, FirvAI1, FirvAI2,

FailBB, ReturnBB) ;
27
28 if (!EpilogueBB) {
29 return false;
30 }
31
32 auto InterludeBB = CreateFirvInterlude(Fn , ClonedBBs) ;
33
34 ReplaceReturns (OriginalBBs, FirvAI1, InterludeBB);
35 ReplaceReturns (ClonedBBs, FirvAI2, EpilogueBB);
36
37 return true;
38 }

