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Abstract. Side-channel and fault-injection attacks using e.g. EM/laser pulse, power glitching are a major concern in the context of embedded systems, 
IoT devices, and cloud security. The Software-implemented Hardware-fault Tolerance (SIHFT) countermeasures are the main approach to hardening 
the systems built using Commercial Off-the-Shelf (COTS) components, in which modification of hardware is not feasible. The research presented in 
this article is focused on an open-source solution to language-based, compile-time application of SIHFT countermeasures. The proof-of-concept 
implementation is based on the LLVM compiler framework and demonstrates using Rust language frontend, allowing the use of other compiler features, 
like optimisation passes and support for multiple target platforms. The results of the research are publicly available in GitHub repository. 
 
Streszczenie. Ataki kanałem pobocznym I wstrzykiwanie błędów przy użyciu impulsu elektromagnetycznego/laserowego, lub usterki zasilania, 
stanowią poważny problem w kontekście systemów wbudowanych, urządzeń IoT i bezpieczeństwa w chmurze. Implementowane programowo środki 
zaradcze Hardware-Fault Tolerance (SIHFT) są głównym podejściem do utwardzania systemów zbudowanych przy użyciu komercyjnych 
komponentów, w których modyfikacja sprzętu nie jest możliwa. Badania przedstawione w tym artykule koncentrują się na otwarto-zródłowym 
językowym rozwiązaniu stosowanym w czasie kompilacji. Implementacja prototypu jest oparta na projekcie modularnego kompilatora LLVM i 
demonstruje użycie kompilatora dla języka Rust, co pozwala na korzystanie z innych funkcji kompilatora, takich jak przebiegi optymalizacyjne i obsługa 
wielu platform docelowych. Wyniki badań są publicznie dostępne w repozytorium GitHub. (FIRV: oparta na języku ochrona integralności przepływu 
sterowania dla architektur RISC-V) 
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Introduction 
Modern Operational Technology (OT) systems like 

industry and avionics controllers, IOT devices, and 
embedded systems in general, are increasingly complex 
solutions of software layers forming a software stack, and 
many interconnected physical components, the hardware. 
While software-level attacks focus on exploiting 
vulnerabilities and inconsistencies in the abstract logic model 
of computing the hardware-level attacks target directly the 
very physical structure of the device to observe or tamper 
with the information that is stored in form of energy in 
registers or passed through the device internal buses or 
interfaces. 

The side-channel attacks like EM/laser pulse or power 
glitching are a family of hardware attacks, focusing on the 
exploitation of the hardware by observing and/or altering the 
physical state of the device, rather than exploiting the 
algorithmic or hardware vulnerabilities. The side-channel 
analysis can be performed using a variety of methods, 
including timing [1], power consumption [2], electromagnetic 
emanation [3], or temperature characteristics [4]. 

The fault-injection attacks (also known as glitching), are 
a type of active side-channel attacks, where through altering 
the state of the device, an adversary is attempting to alter the 
outcome of the program, for example: skipping key 
verification, accepting unsigned code, modifying data. Fault 
injection can be performed using many methods, from 
electromagnetic impulse [5], to alteration of the power supply 
voltage [6] or laser light [7]. 

Side-channel analysis and fault-injection attacks are a 
major concern in several branches of software and hardware 
security, including embedded systems, IoT device 
development, and cloud platforms. 

The Software-implemented Hardware-fault Tolerance 
(SIHFT) countermeasures are the preferred, and often the 
only possible method of hardening the device against fault-
injection attacks, when using the Commercial Off-the-Shelf 
(COTS) components, where modification of the underlying 
hardware is not feasible [8]. 

The countermeasures currently used in the industry very 
often require manual application on the source or binary 

level. The former approach entails a need for disabling the 
compiler optimisations or insertions of artificial code 
fragments, effectively preventing compilers from optimising 
away the countermeasures, while the latter requires a deep 
understanding of target architecture and results in a high 
coupling, likely leading to increasingly complex development 
process and requires highly trained and specialised software 
engineers [9], [10]. 

The main goal of this work is to improve the firmware 
development workflow by providing a proof-of-concept 
solution for applying the countermeasures by specifying a 
simple attribute/pragma in the source code, which the 
compiler can then use to apply required countermeasures.  
 
Side-channel attacks and fault injection 

Side-channel attacks are a class of attacks focused on 
the exploitation of physical properties of the target system, 
allowing for leaking some information on the conducted 
computations through unintended channels (electromagnetic 
field, temperature, power consumption, etc.) rather than 
through direct vulnerability of the system. 

Side-channel analysis stems from research on the 
security of cryptographic protocols, where leaking even a 
small amount of information can lead the adversary to gain 
advantage and can compromise the security of the system. 
It is important to note that side-channel analysis focuses 
mostly on the particular implementation of the protocol, 
usually on a specific hardware. 

Fault-injection (FI) attacks are separate, but closely 
related branch of attacks. Their core component is to focus 
on exploiting the physical characteristics of the hardware, for 
example, altering the power supply voltage or changing 
temperature, to introduce a change in the system. It is usually 
extremely hard to explain the exact process leading to the 
change, but the observed behavioural change can be similar 
to, for example, instruction skips or data alteration. Fault 
injection models can also be effective when designing 
solutions for harsh environments, like aerospace, defence, or 
critical infrastructure (e.g. nuclear power plants), where the 
increased radiation levels can lead to spontaneous faults. 
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The main difference between side-channel analysis and 
fault-injection attacks is that the former is focused on the 
passive or semi-passive observation of the operation of the 
system, while the latter consists of performing very invasive 
actions on the system. Some resources classify fault 
injection attacks as a branch of side-channel analysis [11], 
[12]. 

The history of side-channel analysis comes from the 
papers by Kocher [1] and Kocher et al. [2], where timing 
attacks and differential power analysis methods were used to 
retrieve partial information or a whole secret key based on 
side-channel knowledge. An extensive survey of fault 
injection attacks and software and hardware 
countermeasures was presented in the report by Bar-El et al. 
[13]. 

The primary sources of side-channel information come 
from both unintentional sources (electromagnetic emanation, 
power consumption, timing) and intentional sources (memory 
footprint, sensor usage, data consumption) [12]. 

Originally, side-channel attacks relied on physical access 
to the analysed device, but the recent growth of multi-tenant 
cloud architectures opened a new area of research, where 
side-channel information can be leaked despite the logical 
separation of the computations, for example, power-
consumption analysis in the FPGA accelerators [14] or 
remote exploitation of power management mechanisms [15]. 

 
RISC-V architecture and LLVM compiler framework 

The research presented in this work is focused on, but 
not limited to, RISC-V architecture. The choice of RISC-V as 
the architecture of focus is motivated by the increasing 
popularity and impact of RISC-V-based processors and 
relatively small amount of research regarding side-channel 
and fault-injection attacks in RISC-V architectures. A 
description of the architecture and the design considerations 
can be found in [16]. The full specification of the ISA can be 
found in [17]. The approach selected to demonstrate results 
of the research was QEMU [18], due to prior knowledge of 
the platform by the author, broad documentation, and 
community support. 

LLVM is a project containing tools and libraries that can 
be used to build highly optimised and robust compilers and 
language toolchains [19], [20]. The backbone of the project 
is LLVM IR, an intermediate representation that is designed 
to be a portable, high-level assembly [21].  

The standard architecture of the compiler consists of 
three main blocks: frontend, optimiser, and backend. The 
frontend performs tasks connected with the syntax and 
semantics of the input language: lexical analysis, syntax 
analysis (parsing) and semantic analysis. The optimiser step 
can perform machine-independent optimisations, for 
example, constant propagation or dead code elimination. 
The backend step consists of target-specific optimisations, 
like instruction scheduling, replacing instructions with faster 
ones [22]. 

Compilers built using the LLVM provide a high degree of 
freedom and robustness with regard to input language and 
target architectures, thanks to the decoupling of the three 
aforementioned steps. The language-specific frontends, that 
emit LLVM IR, can use the same optimisation pipeline. The 
target-specific backend, can then process the IR and perform 
machine-specific operations. The flow diagram of the 
process is shown in figure 1.  

 
Related work on fault-injection countermeasures 

The two main categories of fault-injection 
countermeasures are fault resilience, stemming from the 
research on the reliability and robustness of software and 

hardware solutions, and fault detection, which is used mostly 
in security research.  

The main approach to the fault resiliency problem is the 
introduction of redundancy. The most common is the 
instruction-level redundancy presented in, for example, the 
paper by Moro et al. [23], where the instruction-level 
redundancy approach for ARM Thumb-2 was formally 
verified. An important notion in the context of instruction 
redundancy is the idempotency of the instruction, meaning 
executing the instruction twice leads to the same machine 
state. The instruction-level redundancy approach has been 
presented and improved in various papers, e.g. Barry et al. 
proposed in [24] a LLVM-based solution of application of the 
redundancy, improving on the assembly-based method of 
Moro et al., and Chen et al. [25] proposed usage of the SIMD 
instructions to achieve the redundancy with reduced 
performance overhead. 

In article [26], Schilling et al. proposed a variety of 
countermeasures in the context of control-flow integrity and 
stateful CFI branching. The article mentions implementation 
based on the LLVM project, but no publicly available 
implementation is available. 

The article by Oh et al. [27] introduced Error Detection by 
Duplicated Instructions (EDDI), where the instruction-level 
redundancy is augmented with the result checks. In the 
article by Reis et al. [28], there has been presented the usage 
countermeasures (EDDI, Error Correcting Codes, Extended 
Control Flow checks). 

The article by Richter-Brockmann et al. [29] presents a 
universal framework for verification of the (primarily 
hardware) fault-injection countermeasures. 

Finally, a very recent report by the German Federal Office 
for Information Security [10] provides a survey on the topic of 
hardware fault attacks on microcontrollers, classification, and 
survey on the software and hardware countermeasures. 

Currently implemented solutions 
The manual implementations of the countermeasures 

have been applied in various projects. Some of the open-
source examples include: 
* wolfSSL - the procedures regarding verification of 
signatures used in the boot process are manually hardened 
by using platform-specific assembly [30], 
 * OpenTitan [31] - implementation of platform-specific 
''laundering'' and barrier primitives, which prevent the 
compiler from tracking the connections of the value to other 
values in context, and therefore optimising the hardened 
code away, 
* MCUboot [32] - implementation of various 
countermeasures, e.g. global fragile call counter, conversion 
of integers to pair (value, value xor mask). 

One of the automated approaches to the application of 
countermeasures via binary rewriting was presented in the 
paper by Kiaei et al. [9], where the compiled application is 
disassembled and using the faulter-patcher framework the 
countermeasures are applied to places, where the faulter has 
managed to alter the outcome of the program. 

The language and intermediate-level approaches have 
been implemented in various projects, one of the most widely 
known is the Cogito project [33] that is built on top of the 
LLVM toolchain. The research on the project led to 
publication of many papers (e.g. mentioned earlier work by 

Fig.1. Frontend-optimiser-backend LLVM architecture 
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Barry et al. [24]), but the source code and resulting tools are 
not released. 

One of the most complete and publicly available tools is 
CompaSeC project [34], in which various countermeasures 
(i.a. EDDI, SWIFT, RASM [35]) can be applied by the LLVM 
passes. When compared to the solution presented here the 
main differences is focus on the low-level (machine-
dependent) transformations and the use of external 
configuration files or command-line arguments to specify the 
scope of application of the countermeasures. 

 
Fault model, solution design and implementation 

An important design consideration, that needs to be 
carefully thought through, is the threat/fault model. The 
internal mechanisms of the fault injection attacks are very 
difficult to research and understand [36], [13], [37], but 
outcomes observed can be, i.e. single/multiple instruction 
skip, bit flip, random byte, or permanent fault. 

The fault model assumed in this project is the single 
instruction skip, as it’s one of the most often observed 
outcomes in electromagnetic fault-injection and voltage 
glitching attacks [23]. 

The solution presented in this work consists of two main 
parts: modification of the LLVM and extending the Rust 
frontend to allow specifying the components requiring 
hardening. The LLVM modification can also be used as a 
standalone tool, e.g., when using another front-end 
language. 
 LLVM Pipeline - to successfully implement the automatic 
countermeasure instrumentation, it is imperative to select a 
proper place to insert the transformation. The general 
architecture of the LLVM backend from previous section 
could be split into lower-level components. Figure 2 presents 
is a more granular view of the pipeline. The middle-end 
consists of the machine-independent optimizations and code 
generation unit, which emits MIR -- the machine intermediate 
representation, which is a high-level SSA representation of 
the target assembly. The backend is built from the machine-
dependent optimization and the final assembly emission unit. 

 LLVM Passes - the structure of the pipeline can be 
inspected on an even lower level (figure 3). The optimization 
passes, are general optimizations, that are part of the LLVM 
Optimization Pipeline (opt tool). The code related to those 
passes can be found in Analysis, Transforms folders. The 

CodeGen part of the pipeline consists of the target-
independent IR passes, the preISel passes and the target-
independent machine passes (working on MIR). The 
instruction selection is the pipeline step, where the LLVM IR 
is transformed into the MIR. After that, the machine-
dependent passes are executed (e.g. register allocation). 

The last step of the pipeline is the materialization of the MIR 
into the target machine assembly. 
 
 Modification of Rust - majority of the changes required 
for the Rust language are connected with updating the 
underlying LLVM project, as well as allowing propagation of 
the required attributes. 
Rust language allows using two kinds of attribute: inner and 
outer. The former applies to the element it was defined inside 
of (function, crate), while the latter is applied to the next 
element. Example of attribute usage is presented in figure 4.  

The approach implemented in this work provides 
function-level redundancy. The motivations for selecting 

such countermeasure are: simplicity of implementation, 
medium additional memory (2 return value slots and double 
redundancy of input parameters, that could be further 
reduced) and computational overhead (double execution of 
computed function and several load/store and comparison 
instructions). 

The countermeasure works by inserting the Prologue, 
Interlude, Epilogue, and Failure blocks and clone of the 
function body. The general diagram for the countermeasure 
operation is presented in figure 5. The Prologue block 
contains an allocation of the memory for the return values 
and the function parameters for the first execution. The 
copying of function parameters is necessary, as functions 
can modify their parameters. After the allocation steps, the 
parameters are then copied to the proper slots, and the 
execution of the function body can start. The Interlude block 
is responsible for storing the return value of the first 
execution, and allocation of memory for parameters for the 
second execution, and copying them. The Epilogue block 
handles the return value from the second execution, retrieves 
the result of the first computation, and only if those values 

match, returns, or else the Failure block is executed, which 
is the block responsible for handling the error.  

The important step prior to implementation is to select the 
list of assumptions. The most important ones are: 

Fig.3. LLVM Pass within pipeline 

 
Fig.4. Example attribute usage 

Fig.5. Application of the proposed hardening countermeasure 

 
Fig.2. LLVM pipeline 
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* Hardening only pure functions -- the hardened function 
cannot have any side effects. The situation of applying the 
hardening to impure function is an undefined behaviour. 
* Supported types -- Due to the limited scope of the project, 
only support for integer and floating-point types is 
implemented. 

The process of implementation requires making changes 
in a few places across the project. All the paths mentioned 
later are relative to the llvm catalogue in the root folder, which 
contains the code of the core LLVM tools and libraries.  

Modifying the LLVM IR - the first step of implementation 
is the modification of the LLVM IR, which allows specifying 
the attribute on a function. The selected attribute name was 
firv_harden (The project was named FIRV, Fault Injection in 
RISC-V). 

Introduction of the attribute - the LLVM attributes are 
defined in the include/llvm/IR/Attributes.td file. The following 
definition was added: 
 

def FirvHarden: EnumAttr<"firv_harden", [FnAttr]>; 

 
The meaning of the statement is: define FirvHarden to 

derive from the EnumAttr subclass; the tag is firv_harden and 
it's a function attribute. 

 
Adding the bitcode identifier - it's required to specify the 

bitcode identifier for the attribute. It's done in the 
include/llvm/Bitcode/LLVMBitCodes.h header file. The 
AttributeKindCodes enum should be extended with the 
desired attribute id: 

 
enum AttributeKindCodes { 

    ... 

    ATTR_KIND_FIRV_HARDEN = 100, 

…}; 

 
Handling the miscellaneous operations - the former 

changes entail a need to implement the handling cases in a 
couple of spots: bitcode reader, bitcode writer, and code 
extractor. 

The required changes are: adding a case for the attribute 
in BitcodeReader.cpp, in the getAttrFromCode function, 
updating the getAttrKindEncoding function of 
BitcodeWriter.cpp module, and changing the function 
constructFunction in the CodeExtractor.cpp module. The last 
function is responsible for the extraction of the code 
fragments and placing them in a new function. The required 
change comes from the need to specify whether the attribute 
can or should not be added to the newly extracted function. 
In the case of this attribute, it's imperative to propagate it.  

Attaching the Pass - before implementing the pass, it is 
required to select the type of the pass (Module or Function) 
and its placement in the pipeline. According to the LLVM 
documentation Function passes are required to satisfy 2 
conditions: 
* Optimization (or transformations) are organized globally, 
i.e. one function at a time. 
* The pass doesn't cause the addition or removal of any 
functions in the module. 

As both of those conditions are satisfied in the case of the 
transformation being added, hence the FunctionPass can be 
used. 

Selection of the place in the pipeline offers following 
choices: optimization pass (Analysis/Transform), CodeGen 
pass, Target-specific pass. 

Creating the header file - the first step of attaching the 
pass is the creation of the header file for the pass -- 
FirvHarden.h. The header is the place, where usually the 
declarations of the functions and classes are taking place. 

The minimal declaration of a functional FunctionPass 
requires specification of the pass ID, constructor and an 
overridden runOnFunction method.  

Pass initializations - to use countermeasure pass, it is 
required to provide hooks allowing the creation and 
initialization of the pass. The former is declared in the 
Passes.h header: 

 
FunctionPass *createFirvHardenPass(); 

 
The latter is declared in the InitializePasses.h header: 

 
void initializeFirvHardenPass(PassRegistry&);  

 
Pass registration - before the pass can be used in 

LLVM, it needs to be registered in the LLVM's pass manager. 
The chosen pipeline placement is in the preISel block (see 
figure 3). Due to the pass not being an optimization pass, but 
exactly the opposite, it's executed in the latest moment 
possible. This allows all previous optimizations to work, while 
ensuring the countermeasure instrumentation is not affected 
by them. The pass registrations for the CodeGen step are 
happening in Target\-Pass\-Config. This class is the base 
class for the target-specific pass config, and the targets can 
override the specified methods (customary, still calling the 
base version of the method, but not required to). The pass is 
added in the addISelPrepare method, which is executed just 
before the Instruction Selection process. Due to the gradual 
introduction of the new Pass Manager [38], it's advised to 
prepare for the eventual transition. Similarly to the legacy 
pass manager, the pass is registered in the ISel Prepare 
step, which is the last step before the Instruction Selection 
step.  

Implementing the Pass - the implementation of the pass 
is done in the FirvHarden.cpp. For the file to be compiled and 
linked into the library it needs to be added to CMakeLists.txt. 
The first part of the file consists of the required definitions, 
initialisation, and creation of the supplemental classes. 

The main method for the pass runOnFunction() is 
presented in Appendix 1. The return value of that function 
indicates if the function has been modified in any way. The 
checks in lines 2 and 7 verify if the transformation should be 
performed on the function -- is the attribute present and if the 
function return type is supported, respectively. 

After that, the actual transformation steps are executed: 
adding store/load for arguments (line 13), cloning of the 
function body (line 17), creation of prologue (line 21), 
creation of fail block (line 23) and return pad block (line 24), 
creation of epilogue (line 26) and interlude (line 32), and 
finally replacing the return instructions to storing the result in 
the respective slot and jump to next block (lines 34, 35). Full 
implementation of the pass can be found in the repository 
firv-llvm-project (see section Code Repositories).  

 
Results 

The test function used to evaluate the countermeasure 
efficacy is presented in the figure 6. The test cases were 
prepared by creating a base file (src/res.rs), and then 
creating a copy (src/harden.rs) with the firv_harden attribute 

 
 
Fig.6. Countermeasure evaluation source file 
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applied to the function. The code can be executed using the 
make rust-asm command, with the RUSTC and SRC 
arguments passed (make rust-asm RUSTC=... SRC=...). 
 

The comparison of the resulting assembly of unhardened 
and hardened cases are presented in figure 7 and figure 8. 
Lines 2-5 are responsible for setting up the stack frame. In 
lines 6-13, the arguments for the first execution are prepared, 
and lines 14-17 are responsible for execution of the 
computation and storing the result. Lines 18-25 are 
responsible for setting up the arguments for the second 
execution, performed in lines 26-29. In lines 30-32, the 
results of the computations are compared. The block 
.LBB1_1 (line 33) is the failure block, consisting of the 
instruction unimpl, causing the hardware interrupt. Lines 37-
39 perform secondary comparison of the results. Lines 40-46 
are responsible for preparing the return value and cleaning 
up the stack. 

 Code repositories - The code and implementation of the 
proposed solution can be found in the FIRV project public 
GitHub repository [39] which is a fork of the official LLVM 
project with the changes described in this chapter. The 
solution was also incorporated in the fork of the Rust 
language. Rust project uses its specific LLVM fork. All above 
and the supporting code: e.g. the scripts for building and 
running the RISC-V code in the QEMU simulator are also 
placed in the public GitHub repository of the FIRV project. 
 
Conclusions and future work 

This project demonstrates a proof-of-concept automated 
countermeasure to fault-injection attacks by applying the 
theoretical protection method to a widely used compiler 
toolchain. The research is mainly focused on the RISC-V 
architecture, but because of the relative similarity of the other 
RISC architectures, the results of the research can be 
applied to other hardware targets like x86 or ARM. 

The application of the Software-Implemented Hardware 
Fault Tolerance (SIHFT) countermeasures is a very 
influential approach in hardening devices against fault-
injection attacks (like EM/laser pulse, power glitching), 

especially in the case of COTS devices, where the 
modification of the hardware device is not feasible. 

The proposed approach of function-level redundancy is a 
countermeasure allowing for the detection of a single fault. 
Function-level redundancy is a high-level solution, in the 
sense that it is not tied to specific platform details, so the 
proposed approach could be used (perhaps with minor 
adjustments) in other architectures like ARM or MIPS, or 
even in a CISC architecture like x86. The successfully 
implemented solution provides a general framework for the 
introduction of additional fault injection countermeasures. 

The implementation, supporting files, and scripts have 
been published in the GitHub repositories and are made 
public which allows the implementation of other 
countermeasures in the future and presents an opportunity 
for further development of the project. 

In this section, there are presented the topics that show 
future work could address the following research paths aiding 
in further development of the FIRV project; the first path to 
focus on was the integration with the frontends of the 
compilers. The most important parts of the hardening are 
happening in the optimisation pipeline and target-specific 
backend, while the frontend code is only responsible for 
passing the attributes in a format that will be understood by 
the LLVM pipeline. The second path is surveying the topic 
under different fault models, e.g. multiple skips or bit-flipping. 
Another related avenue of research, could be the 
implementation of additional side-channel attack protection 
mechanisms, for example, hardening against timing attacks, 
advanced CFI protection methods, or instruction-level 
redundancy methods. The goal of this work was to provide a 
proof-of-concept of the implementation of instrumentation for 
the selected solution and to provide a survey on the approach 
and possible pitfalls in implementing such solutions. 

Last, but not least, an important feature for potential 
industrial usage would be implementing support for complex 
return types, like structures or tuples. Such types are widely 
used in languages like Rust or C++. 
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Appendix 1: Main function of the implemented pass 

 
1 bool FirvHarden::runOnFunction(Function &Fn) { 
2  if (! Fn.hasFnAttribute(Attribute::FirvHarden ) ) { 
3   return false; 
4  } 
5 
6  Type * RetType = Fn.getReturnType(); 
7  if (! isH arden ingSupportedForType (RetType)) { 

8   errs () << " Firv ␣ Hardening ␣ is ␣ not ␣ supported ␣ 

for ␣type ␣ " << * RetType << " \ n "; 

9 
10   return false; 
11  } 
12 
13  StoreArgsAndLoad(Fn) ; 
14 
15  std::vector<BasicBlock*> OriginalBBs ; 
16  std::vector<BasicBlock*> ClonedBBs ; 
17  CloneBasicBlocks(Fn, OriginalBBs, ClonedBBs); 
18 
19  AllocaInst * FirvAI1 = nullptr; 
20  AllocaInst * FirvAI2 = nullptr; 
21  CreateFirvPrologue(Fn, FirvAI1, FirvAI2) ; 
22 
23  BasicBlock * FailBB = CreateFailBB(Fn); 
24  BasicBlock * ReturnBB = CreateReturnBB(Fn,FirvAI1, FirvAI2); 
25 
26  auto EpilogueBB = CreateFirvEpilogue(Fn, FirvAI1, FirvAI2, 

FailBB, ReturnBB) ; 
27 
28  if (!EpilogueBB) { 
29   return false; 
30  } 
31 
32  auto InterludeBB = CreateFirvInterlude(Fn , ClonedBBs) ; 
33 
34  ReplaceReturns (OriginalBBs, FirvAI1, InterludeBB); 
35  ReplaceReturns (ClonedBBs, FirvAI2, EpilogueBB); 
36 
37  return true; 
38 } 

 


