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PV fed boost converter efficiency improvement  
using neural networks and model predictive control 

 
 

Abstract. This paper presents a model predictive control (MPC) technique applied to a DC-DC boost converter powered by a photovoltaic ( PV ) 
generator. The control objective is to ensure the maximum power point tracking (MPPT) using neural networks and achieve a stable output voltage 
under varying environmental conditions. Photovoltaic systems are highly dependent on solar irradiance and temperature, which affect their output 
characteristics. The proposed method leverages predictive control algorithms to anticipate system behaviour and adjust the converter’s duty cycle in 
real-time, thereby improving the system’s overall efficiency and response time compared to conventional control methods. Simulation results validate 
the effectiveness of the proposed control scheme in terms of response time, voltage regulation, and robustness against environmental changes.  
 
Streszczenie. W artykule przedstawiono technikę modelowego sterowania predykcyjnego (MPC) zastosowaną w przetwornicy podwyższającej˙ 
napięcie DC-DC zasilanej z generatora fotowoltaicznego (PV). Celem sterowania jest zapewnienie śledzenia punktu maksymalnej mocy (MPPT) 
przy użyciu sieci neuronowych i osiągnięcie stabilnego napięcia wyjściowego w zmiennych warunkach środowiskowych. Systemy fotowoltaiczne są 
w dużym˙ stopniu zależne˙ od natężenia promieniowania słonecznego i temperatury, które wpływają na ich charakterystykę wyjściową. 
Proponowana metoda wykorzystuje algorytmy sterowania predykcyjnego do przewidywania zachowania systemu i dostosowywania cyklu pracy 
przekształtnika w czasie rzeczywistym, poprawiając w ten sposób ogólną wydajność systemu i czas reakcji w porównaniu z konwencjonalnymi 
metodami sterowania. Wyniki symulacji potwierdzają skuteczność proponowanego schematu sterowania pod względem czasu reakcji, regulacji 
napięcia i odporności na zmiany środowiskowe. (Poprawa wydajności konwertera podwyższającego zasilanego energią fotowoltaiczną przy 
użyciu sieci neuronowych i sterowania predykcyjnego modelem) 
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Introduction 
Photovoltaic (PV) energy has become a crucial 

element of modern renewable energy systems [1][2]. The 
intermittent nature of solar energy presents challenges in 
efficiently converting and controlling the power output of PV 
generators [1][2]. To extract maximum power from a PV 
array, it is essential to employ efficient control techniques 
that adapt to changing environmental conditions, such as 
irradiance and temperature. One widely used topology is 
the boost converter, which steps up the variable DC output 
from the PV generator to a higher, more usable level for 
energy storage or grid connection. Several MPPT 
algorithms have been proposed in literature, with P&O and 
IC being the most commonly implemented [1][2][3][4]. 
These methods, though simple and reliable, often fail to 
achieve satisfactory performance in rapidly changing 
environments. They suffer from oscillations around the MPP 
and slow dynamic response. Therefore, the efficiency of PV 
systems is critically determined by their ability to 
continuously operate at their maximum power point (MPP). 
The present paper explores the use of neural networks 
(NNs) for tracking the MPP [1][2]. Model Predictive Control 
(MPC) has emerged as an advanced technique that can 
handle system non-linearity and constraints more effectively 
[58]. MPC uses a dynamic model of the system to predict 
future behavior and adjusts the control input accordingly [8]. 
In this paper, we focus on implementing MPC for a boost 
converter powered by a PV system and demonstrate its 
superior performance over conventional approaches. 
 
System modelling  

Figure 1 depicts the overall block diagram of the system. 
The system is composed of a photovoltaic module as a 
power source. A voltage step-up converter is connected to 
this generator in order to raise the input voltage to supply 
the load. The measurement of the system currents/voltages 
is carried out in order to control the duty cycle of the 
converter by the MPC technique, while ensuring transfer of 

the maximum power of the photovoltaic module by the use 
of neural networks. 
 
Table 1. PV module parameters 

Panel properties Values 

Peak power (Pmax) 375 W 

Number of cells 72 

Voltage at maximum power (Vmp) 40.2 V 

Current at maximum power (Imp) 9.33 A 

Open-circuit voltage (Voc) 48.7 V 

Short-circuit current (Isc) 10.23 A 

Temp. Coeff. Of Isc (TK Isc) 0.048 %/ °C 

Temp. Coeff. Of Voc (TK Voc) -0.28%/°C 

 
Photovoltaic generator 

Electricity is generated by a photovoltaic (PV) panel that 
converts sunlight into electrical energy [1-3]. Table 1 
provides the key parameters of the PV module used in this 
study. The current generated by a photovoltaic panel can 
be represented by this equation, which is based on the 
single-diode model of a solar cell [1]: 

 
 

(1)   

     
 

Where: 
• IPV -Total current produced by the PV panel. 

• NS- Number of cells connected in series in a module 
(increases the voltage). 

• NP - Number of cells connected in parallel in a module 
(increases the current). 

• Iph- Photocurrent (current produced by sunlight). 
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Fig. 1. System model under study 
 
 

 

• Ish- is the current through the shunt resistor (Rsh). 

• IS- Saturation current (current in the diode when reverse 
biased). 

• VPV - Voltage across the PV panel. 

• Rs- Series resistance. 

• A- Diode ideality factor (a measure of how ideal the diode 
behaves). 

• Vt- Thermal voltage (a function of temperature). 

As illustrated in Figure 2, the generated current and 
voltage demonstrate a non-linear relationship, with the I-V 
curve. 
being divided into three distinct operating regions. On the 
left side of the curve, the PV module behaves as a constant 
current source, while on the right side, it operates in a 
constant voltage mode. Between these two operating 
modes lies the point of maximum power output, which 
corresponds to the highest efficiency. 

Figure 2.left illustrates the effect of irradiance on the I-V 
and P-V characteristics. An increase in irradiance results in 
higher current and output power increases as well. As 
temperature increases, as shown in Figure 2.right, the 
current shows a small increase, but the voltage drops 
significantly indicating that higher temperatures negatively 
affect the overall performance of the PV panel. 

 
Maximal power point tracking 

Neural networks are well-suited for dynamic 
environments where they can learn to map nonlinear 
relationships between inputs (e.g., irradiance and 
temperature) and the desired output (voltage, current or 
power). The neural network used for MPPT (figure 3) is a 
feedforward architecture with one hidden layer, optimized 
for real-time tracking of the maximal power [1-2]. 
Feed Forward neural network type is in this paper. It is 
designed as an interconnected layers. Each layer consists 
of a set of neurons. Increasing the number of layers and 
neurons in hidden layers leads to the best representation of 
non-linearities of the system, however, it exhibits complex 
computations, and therefore, hardware implementation 

constraints. The input layer consists of two neurons 
representing the irradiance one hidden layer with five (5) 
neurons which gives a satisfactory prediction. 

 

 

 

 

Fig. 2. Irradiance and Temperature impact on PV module 
characteristics 
 
 
. The neural network is trained offline using data generated 
from the PV module under various irradiance and 
temperature conditions. Once trained, the neural network is 
deployed for real-time simulation, where it dynamically 
adjusts the duty cycle to maximize the output power. 
Supervised learning is employed to train the neural network. 
The training is performed using Levenberg-Marquardt 
algorithm, which minimizes the mean square error (MSE) 
between the predicted and actual MPP current. 
  The training process is carried out using Levenberg- 
Marquardt Algorithm. The database was partitioned as 
follows: 

• Training data: 70% of dataset 

• Validation data: 15% of dataset 

• Testing data: 15% of dataset 
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Fig. 3. Neural network architecture 

 
 

 
 

Fig. 4. Regression plot at the end of the network training 
 
 
 

 
Fig. 5. Mean squared error issued from training process 

 
Network outputs (predicted values) are equal to the target 
values provided in the training, validation and testing 
phases. The performed fit exhibits a good approximation for 
all of the data sets. To provide a measure of how well the 
predictions of the model are compared to actual outcomes, 
correlation coefficient R is used as a tool. The regression 
plot in figure 4 displays the network predictions (output) with 
respect to responses (target) for the training, validation, and 
test sets. The tracking operation gives a satisfactory result 

for training, testing, and validation sets, and the R-value is 
1.0 equal to the previously smallest validation error for six 
consecutive validation iterations. A plot of the training 
errors, validation errors, and test errors are shown in figure 
5. It is observed that the final mean-square error is small, 
the test set and the validation set errors have similar 
behaviors, which concludes that no overfitting has occurred. 
To further investigate the distribution of errors in the model, 
figure 6 gives a plot of the error histogram. The error 
histogram plot looks fairly symmetric and the peak of the 
distribution lies exactly in the middle of the error’s interval 
indicating the absence of any bias.  
 
Model predictive control 

Predictive control involves using the system model to 
anticipate its future behavior while minimizing the cost 
function [8-10]. This approach requires solving a finite-
dimensional optimization problem at each sampling interval 
(figure 7) [4][8]. For the boost converter, MPC continuously 
predicts behaviors, which concludes that no overfitting has 
occurred. To further investigate the distribution of errors in 
the model, figure 6 gives a plot of the error histogram. The 
error histogram plot looks fairly symmetric and the peak of 
the distribution lies exactly in the middle of the error’s 
interval indicating the absence of any bias. for the total data 
set and shows a very satisfactory accuracy. Training 
finished when the validation error was larger than or the 
output voltage and current over this horizon and determines 
the optimal duty cycle D that minimizes a cost function 
subject to system constraints [6][8-12]. The predictive 
model of the boost converter is derived from its state-space 
representation. The state variables are the inductor current 
iL and the output voltage vC (or vload, as the output 
capacitor is parallel to the load), governed by the following 
equations [6-12]: 

 
 

(2)  

 
 
 

where L is the inductance and C is the capacitance of 
the boost converter. These equations are discretized for 
implementation in the MPC framework, and the future 
values of iL are predicted based on inductance current 
measurements and control inputs. 
 
 

 
Fig. 6. Error histogram resultant from training process 
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Fig. 7. Model Predictive Control workflow 

 
Taking into account the predictive control horizon over n 

samples, the prediction equations for the current iL and the 
voltage vC are provided as follows [6-8]: 
 
 

(3)  

 
 
 
And the two-step prediction horizon is: 
 
 
(4) 

 
 
 
The typical cost function is defined as: 
 
 
(5) 

 
 
 
where: 

• iLref : is the reference current (desired output), 
• iL(k) : is the predicted inductance current at future step 
k, 
• D(k): is the duty cycle, 
• λ : is a weighting factor, and 
• ∆D(k): is the change in duty cycle. 
 
By minimizing J, the MPC algorithm ensures that the output 
voltage follows the reference as closely as possible, while 
avoiding large variations in the duty cycle, which could 
result in instability or excessive switching losses. 
 
Simulation and Results 

To validate the effectiveness of the proposed predictive 
control method, simulations were performed using 
MATLAB/Simulink. The parameters of the PV system and 
the boost converter were selected based on typical 
commercial photovoltaic module and converter 
components. Figure 8 shows the performance of the 
proposed control strategy under variable irradiance and 
temperature conditions. 
The MPC controller successfully tracked the maximum 
power point and maintained stable output voltage, 
demonstrating its robustness and fast response to 
irradiance and temperature changes. 
 

 
Fig. 8. System response to variation of irradiance and temperature 

 
 
First, PV module is exposed to an irradiance of 

500W/m2 and a temperature of 25◦C. The neural network 
estimates with high precision the maximal output current. 
Second, a change at 3s and 6s of irradiance and 
temperature respectively is injected to test the dynamic 
response of the system. It is observed that the tracking of 
maximal power is performed with a high accuracy. 

The proposed MPC controller provided superior 
performance in terms of transient response, steady-state 
accuracy, and handling of non-linearities. 

Figure 9 shows the voltage boosted (load voltage) from 
PV voltage. The combination of neural network and MPC 
controller was able to converge to the MPP much faster, 
while, maintaining the load voltage to the desired values 
with less oscillations. 

In figure 10, MPC controller was also able to drive the 
inductor current to its reference value, ensuring thus good 
dynamic response of the system. 

 
 
 

 
Fig. 9. PV voltage and Load voltage for the corresponding 
conditions 
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Fig. 10. Inductance reference and actual currents 
 

Conclusion 
This paper has demonstrated the feasibility and 

effectiveness of using neural networks for MPPT and MPC 
control in PV systems coupled with a boost converter. The 
integration of neural networks into MPPT allows for real-
time learning and adaptability to changing environmental 
conditions, thus offering improved tracking speed and 
accuracy. 

By leveraging the learning capabilities of neural 
networks, the controller is able to adapt quickly to changing 
environmental conditions. This results in faster convergence 
to the MPP, reduced power oscillations, and improved 
overall efficiency. On the other hand, MPC exhibited 
superior performance in terms of response time, accuracy, 
and robustness. Future work will focus on the 
implementation of MPC in hardware and investigating its 
performance in real-world scenarios. 
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