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Crack characterisation in buildings 
utilizing deep learning techniques 

 
 

Abstract. A significant field of research is the use of deep learning algorithms to detect and characterize cracks in structures. Building cracks may 
cause catastrophic structural collapses that endanger people's lives and property. This issue can be helped by deep learning algorithms, which allow 
for the very accurate identification and categorization of various crack forms. The present study uses a data set of 5000 photos to examine how 
image pre-processing affects the effectiveness of Deep Learning crack detection. The outcomes demonstrated that the CNN model's ability to 
identify cracks in concrete buildings is unaffected by the use of a pretrained model with RGB weights. Pretrained VGG16 and the Keras Python 
library are used to create a CNN model. The SciKit Image Python package was employed to divide the original picture data set into five comparison 
sets. The created model performed better than 98% in terms of accuracy and F1 values. 
 
Streszczenie. Istotnym obszarem badań jest wykorzystanie algorytmów głębokiego uczenia do wykrywania i charakteryzowania pęknięć w 
konstrukcjach. Pęknięcia w budynkach mogą powodować katastrofalne zawalenia konstrukcyjne, które zagrażają życiu i mieniu ludzi. Problem ten 
można rozwiązać za pomocą algorytmów głębokiego uczenia, które umożliwiają bardzo dokładną identyfikację i kategoryzację różnych form 
pęknięć. W tym badaniu wykorzystano zestaw danych 5000 zdjęć, aby zbadać, w jaki sposób wstępne przetwarzanie obrazu wpływa na 
skuteczność wykrywania pęknięć metodą głębokiego uczenia. Wyniki wykazały, że zdolność modelu CNN do identyfikowania pęknięć w betonowych 
budynkach nie jest naruszona przez użycie wstępnie wytrenowanego modelu z wagami RGB. Wstępnie wytrenowany VGG16 i biblioteka Keras 
Python są używane do tworzenia modelu CNN. Pakiet SciKit Image Python został użyty do podzielenia oryginalnego zestawu danych obrazu na pięć 
zestawów porównawczych. Utworzony model uzyskał wyniki lepsze niż 98% pod względem dokładności i wartości F1. (Charakterystyka pęknięć w 
budynkach z wykorzystaniem systemów głębokiego uczenia) 
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1. Introduction 
Deep learning models demonstrate competence in 

handling large-scale datasets in order to identify and 
describe structural flaws in structures. This is mostly 
achieved via sophisticated image analysis techniques, in 
which deep learning models examine building photos to 
identify cracks of different shapes, sizes, and sorts. The 
crack detection strategies or techniques involve 
segmentation, classification, and detection procedures. 
Segmentation is the computational process of identifying 
and separating the different components within a picture. In 
building inspection, the segregation of the structurally 
damaged, like the cracked sections from the intact parts, is 
called segmentation. Classification is the process of 
systematically assigning descriptive categories to areas that 
have been separated out of a picture. In this application, it 
refers to different categories of cracks based on their 
unique features. Detection refers to the act of determining 
the exact position and dimensions of cracks found in the 
building structure. 

It will be powered by some of the deep learning 
techniques that identify and characterize key structural 
faults in building infrastructural facilities, including CNNs, 
RNNs, and DBNs. These algorithms perform very well at 
precisely identifying and classifying the various types of 
cracks that appear in structures using large datasets. Deep 
learning algorithms have completely changed the 
procedures for building crack detection, classification, and 
characterization. The mentioned techniques can project 
preventive measures to prevent structural collapses and 
reduce hazards to health and property integrity by correctly 
assessing and examining the problem structures. 

The following research makes use of deep learning 
algorithms in the processes of identification, localization, 
and rating of the severity of structure cracks in buildings. 
Principally, this aims at improving the present structural 
safety measures against a number of dangers and reducing 

the risks of accidents caused by the loss of integrity of 
buildings. 

 
1.1 Insights from Literature 

This has formed the basis of numerous studies 
regarding the use of deep learning techniques in building 
crack detection. 

For the detection of cracks in concrete image, [1] 
proposed a deep learning approach using a convolutional 
neural network and a deep belief network for crack 
classification and detection purposes. [2], [3] developed a 
deep learning framework for identifying cracks from 
pavement photos. Multiple deep neural networks recognize 
and classify different kinds of pavement cracks. By the 
same token, [4] proposed a deep learning approach that 
identifies and classifies surface cracks in concrete buildings 
with a neural network architecture together with a 
backpropagation algorithm. On their part, [5] proposed an 
inventive deep learning system for pavement fracture 
detection. Their method used a CNN, which carefully 
scanned image patches to ensure an accurate classification 
of crack and non-crack areas. [6] put forward the "VGG16" 
method, a deep learning-based crack detection and 
classification methodology for identifying and classifying 
different fracture types. [7] provided a deep learning 
approach for the identification of cracks in pavement 
images. Their approach could correctly classify fracture and 
non-fracture images using a design for a convolutional 
neural network. In [8], integrated multi-feature learning with 
multi-scale fusion approaches in a deep learning framework 
for the identification of concrete cracks. Their approach 
performed better compared to traditional machine learning 
techniques. Similarly, [9] proposed the framework of "AC-
CNN," which has been a breakthrough of deep learning 
techniques designed for the identification of cracks in 
building façade photographs. It demonstrates potent ability 
in the detection and classification of different fracture types. 
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Besides, [10] conducted a study on detecting cracks in 
concrete structures using convolutional neural networks and 
transfer learning. Their study was focused on the dataset 
composed of images from concrete specimens showing 
three different classes of fracture severity: no cracks, fine 
cracks, and severe cracks. The outcome shows how good 
the CNN model performed in the detection of both small 
and large cracks in the concrete sample, with an accuracy 
value that is high. In the experiment, [11] applied deep 
learning techniques CNNs and RNNs for identifying road 
cracks. With the aid of an image-based dataset dedicated to 
road pavement cracks, the research demonstrated that 
deep learning algorithms could be very effective in the 
identification and classification of those structural flaws. On 
the other hand, [12] suggested a deep learning model of 
CNNs for the purpose of detecting cracks in reinforced 
concrete buildings. To be more specific, the algorithm was 
trained on a large collection of photos showing different 
kinds and sizes of cracks in reinforced concrete. The results 
showed how fine the algorithm could identify and classify 
the cracks in these structural components. [13] proposed a 
deep learning framework that ensembles CNNs in order to 
automatically identify cracks on building facades. This 
framework showed leading performance in the accurate 
identification and classification of different kinds of cracks. 
[14] have worked on the application of transfer learning in 
training deep neural networks toward the identification of 
cracks in concrete buildings. The results showed how their 
approach could identify and classify a large number of crack 
types in the concrete pavement. [15] have just come up with 
a deep learning approach for automated detection and 
separation of cracks in concrete buildings. In the 
identification and segmentation tasks, this achieved more 
than 97% accuracy with the aid of a dataset containing over 
2,500 photos of concrete surfaces bearing different kinds of 
cracks. 

It is observed from the literature that deep learning 
approaches using CNNs successfully identify and 
characterize the structural cracks in buildings and other 
infrastructures. The precision of the proposed models 
depends on the amount and quality of data used for training 
purposes. Accordingly, further research into building context 
fracture detection models is expected to be more accurate 
and effective. This research effort is intended to approach 
the systematic study of photographic evidence of cracks on 
different surfaces using deep learning techniques. 
 
2. Cracks in Construction 
2.1 Cracks and its classification 

Cracks in concrete and masonry are characterized by 
the complete or partial separation of the material into two or 
more pieces due to cracking or spalling. These cracks can 
occur in either plastic or hardened concrete. Cracks can 
have a wide range of reasons, from minor cosmetic 
problems to major structural flaws and durability issues. 
Therefore, cracks can serve as indicators of the overall 
extent of visible damage or hint at more profound structural 
problems. Cracks are categorized into five main categories 
in a systematic manner: structural cracks, which are crucial 
for maintaining the structural integrity of the building; 
concrete cracks, which are specific to the concrete material; 
plaster cracks, which happen on plastered surfaces; joint 
cracks, which show up at the intersections of various 
construction elements or materials; and floor cracks, which 
are specific to flooring systems. Understanding the type and 
cause of each crack is essential for diagnosing the 
underlying issues and implementing appropriate remedial 
measures. 
 

2.1.1 Structural cracks 
Cracks exceeding 1/8 inch (3 mm) in width are classified 

as structural cracks (Fig.1), typically manifesting as 
horizontal, diagonal, or stepped formations with nearly 
symmetrical patterns. Primary causes include water-
saturated ground following heavy rainfall, inadequately 
prepared construction sites, planning errors, ground 
movement, and soil shrinkage due to prolonged drought 
conditions. The emergence of these structural cracks can 
lead to functional issues such as difficulty in closing 
windows and doors, and noticeable tilting of floors, 
significantly diminishing the comfort and usability of a home. 
Moreover, the discussed cracks compromise the structural 
integrity of the building, adversely affect indoor air quality, 
create conditions conducive to mould growth, and provide 
entry points for vermin and crawling insects. Promptly 
addressing structural cracks is essential to maintain the 
stability, safety, and habitability of the structure. 

 
 

 
Fig.1. Structural Crack 

 
 
2.1.2 Concrete Crack 

Outdoor concrete structures often undergo shrinkage 
during the curing process, primarily due to the evaporation 
of water from the concrete mixture. Cracking (Fig.2) occurs 
when the force of this shrinkage exceeds the concrete’s 
inherent strength. This phenomenon can be conceptualized 
as a race between two competing processes: the 
evaporation of water and the gradual strengthening of the 
concrete over time.  
 
 

 

Fig. 2. Concrete Crack 

 
 
2.1.3 Joint crack 

A construction joint (Fig.3) is strategically incorporated 
into a structure to minimize potential cracking and to 
streamline the construction process. It serves as an 
engineered point of controlled movement and is essential in 
accommodating the natural expansion and contraction of 
materials. Without construction joints, structural integrity 
could be compromised, leading to undesirable cracks and 
deformations. Well-designed construction joints enable 
efficient construction without the need for costly and time-
consuming remedial procedures and techniques. 
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Fig.3. Joint Crack 
 

2.1.4 Plaster crack 
Plaster cracks, depicted in Fig.4, manifest as minor 

cracks in plaster walls. Despite popular belief, these kinds 
of cracks are very common and usually harmless. These 
cracks generally appear when gypsum plaster is drying and 
curing; a small amount of shrinkage causes this to happen. 
These cracks are frequently seen in newly built or recently 
enlarged structures as a result of continuous settling 
processes, which can take one to three years to fully settle. 
Plaster surface cracks can also arise as a result of variables 
including moisture content, temperature fluctuations, and 
ambient humidity. The mentioned climatic variations make 
the plaster expand and contract, enabling movement away 
from or toward the general structural stiffness of the 
building. These small gaps may later develop into larger, 
more visible cracks as the plaster settles and cures. 
 

 
Fig. 4. Plaster Crack 

 
2.1.5 Floor crack 

Most often, floor cracks (Fig.5) are an indication of poor 
building techniques or a substrate/uneven foundation that 
has slipped under the pressure exerted by the structure of 
the building. Such issues may escalate to bring many 
problems to the stability and integrity of a structure over 
some time. Specifically, there is a big risk in settling 
foundations that manifest in the expensive gradual 
degradation of floor surfaces. Such degeneration can be 
seen with cracks on the walls, misaligned walls, or drooping 
floors. What might look like tiny cracks may later turn into a 
full-fledged structural issue. Sagging buildings, sticking 
doors and windows, and standing water next to cracks 
indicate more serious structural instability. The concerns 
must hence be looked into with immediate effect, as they 
may escalate and worsen inherent structural defects if not 
addressed promptly, resulting in time-consuming and costly 
corrective action. 

 

 

Fig.5. Floor Crack 

 

3. Deep Learning algorithm 
3.1 Deep Learning 

A class of machine learning algorithms, "deep learning" 
is inspired by how the human brain is constituted and its 
operations, but with very differentiated capabilities. Huge 
amounts of data can be processed and used to train these 
algorithms. While a neural network with just one layer can 
make some basic predictions, several hidden layers bring 
accuracy and deeper tuning. Deep learning has a variety of 
applications that realize many artificial intelligence services 
and systems, thereby enabling automation and running 
complex analyses autonomously. Nowadays, these 
technologies underlie voice-activated devices, like TV 
remotes and digital assistants, and complex applications for 
credit card fraud detection. Moreover, deep learning is 
fuelling innovation in very cutting-edge areas, like 
autonomous vehicles. 
 
3.2 Mechanisms of Deep Learning 

Artificial neural networks, also known as deep learning 
neural networks, are a means of analyzing data inputs 
through the use of connected nodes that are biased and 
weighted. This makes them capable of emulating some 
features of the way a brain works. Within this context, it 
becomes possible to recognize, identify, and describe 
patterns present within datasets with accurate precision. 

A deep neural network has a large number of layers, 
and each of them improves the results on classification or 
prediction using the one preceding it. This computation-
based development of a network is called forward 
propagation. The input and output layers are normally the 
visible levels to a deep neural network. The input layer 
collects and processes data; the output layer then makes 
the final predictions or classifications.  

Backpropagation is a method that uses algorithms such 
as gradient descent to compute the prediction error to 
optimize the performance of the network. Computed 
information gets propagated backward through layers to 
update the weights and biases. With time, predictions get 
optimized, and mistakes are minimized when forward and 
backpropagation is used repeatedly. These techniques are 
manifold and in turn complicated, even if the above is a 
simple deep neural network.  

There exist many types of neural networks. Some of 
them specialize in diverse areas of data and problem 
domains. Convolution Neural Networks, for example, have 
been surpassing humans since 2015 in specific computer 
vision tasks by detecting properties in images for tasks such 
as recognizing objects. On the other hand, recurrent neural 
networks are very good in processing sequential or time 
series data, so they have applications in speech recognition 
and natural language processing. 

 

3.3 Artificial Neural Network 
Neural networks are designed to resemble the way the 

human brain processes information. Artificial Neural 
Networks (ANNs) are usually composed of many artificial 
neurons arranged in linked layers. Every neuron in an 
Artificial Neural Network (ANN) functions as a mathematical 
function, taking in input values, processing them using an 
activation function, and then sending the results to other 
neurons or to the ultimate output. In essence, a neural 
network consists of activation functions that decide the 
output depending on the inputs received, output layers for 
generating results, and input layers for consuming data. A 
graphical depiction of this mathematical model is shown in 
Fig.6. 
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Fig.6.  Mathematical model of artificial neuron 

 

3.4 Convolutional Neural Network 
A subclass of deep neural networks called convolutional 

neural networks (CNNs) is mostly used for processing 
visual data using computational fields of view. CNNs are 
typically designed with convolutional layers, subsampling 
layers, and a densely linked layer that generates the final 
softmax vector. This architectural paradigm has its roots in 
LeNet-5, an innovative ConvNet designed for 28x28 grid 
handwritten digit recognition. Several blocks that 
individually mimic the traditional LeNet-5 design are 
common in modern CNN architectures, allowing for the 
creation of models with hundreds of layers of depth. 
 
3.5 Texture classification 

Texture classification is one of the most difficult 
problems in machine learning since it differs from object-
based classification techniques. Statistical characteristics 
and recurring patterns, varying from extremely regular to 
stochastic, define textures. Classification, segmentation, 
synthesis, and form analysis are the four main sub-
problems that comprise the area of texture analysis; this 
project focuses mostly on classification tasks. 

In the 1980s and 1990s, filtering techniques and 
statistical modelling were the two key areas of focus for 
early texture analysis research efforts. The main goal of 
filtering algorithms is to extract textural information through 
the use of simpler filters like Gaussian differencing or 
convolutional filters (like Gabor filters and pyramidal 
wavelets). Statistical modelling, on the other hand, uses 
probability distributions seen in random fields to describe 
textures. 

Convolutional neural networks (CNNs), attribute-based 
classification systems, and Bag-of-Words (BoW) models 
are the three main approaches that have emerged over 
time for texture classification. An important paper, by [16] 
highlighted CNNs' enduring bias for challenges including 
texture. The article also included research showing that, on 
datasets such as ImageNet, some CNN architectures may 
perform robust object classification with just texture 
information. For example, [17] found that linear classifiers 
run on CNN texture maps showed less loss divergence than 
the original network, therefore indicating that CNNs are 
good at capturing and utilizing texture information in a very 
natural way. [16] elaborated that CNNs might actually 
integrate texture signals across a number of layers, even 
with tiny receptive fields, and actually perform well in highly 
accurate ways on ImageNet tasks relating to object 
categorization. This reflects the capability of CNNs in 
conditions where texture-based signals are key, hence 
making them very strong contenders for the more complex 
classification problems like crack detection. 
 
4. Model Development using Software Tools 
4.1 Software Tools Used in the Experiment 

Several software tools were used throughout the 
experimental phase for easier collection of data and testing 
on the models. This section explains the various software 
tools that have been in use within the experimental 

processes of this study, outlining what they contribute to the 
research aims and how they enable a reliable method for 
data collection and experimentation. 
 

4.1.1 Tensor flow 
TensorFlow is a very popular platform for machine 

learning, with a large and extensive ecosystem that 
includes standardized resources, libraries, and tools. The 
platform reduces the need to study deeper knowledge of 
complicated characteristics by providing ease of building 
machine learning algorithms with accessibility. In this 
respect, one can easily experiment with different designs for 
a model and parameters within the TensorFlow platform. It 
also provides the ability to train models more efficiently due 
to its usage of GPU acceleration, speeding up training 
times. 
 

4.1.2 Keras 
Keras is an extremely high-level neural network API that 

can run on top of TensorFlow, CNTK, or Theano. Keras' 
aim is to make it easy to experiment in machine learning. It 
encourages speed from ideation to execution in order to 
facilitate fast iteration and faster creation of results. 
Sequentially created Keras models are characterized by 
their very self-explanatory coding paradigm; that is, it is very 
easy to implement new functions, modules, loss functions, 
or activation functions. Well, Keras is a Python 
implementation that guarantees readable and debug-
friendly code. This makes it possible to have fast 
development and debugging processes. The Keras API 
offers support for using pre-trained models learned on 
ImageNet. Therefore, this creates flexibility in deploying 
models either with or without a classification layer, 
depending on specific research or application requirements. 
 

4.2 Model Development of Crack Detection  
4.2.1 Data Collection 

The performance of machine learning models is strongly 
influenced by the quantity and makeup of a dataset. 
Although smaller photos speed up training and minimize 
data quantity, too tiny images could not contain enough 
information to support a thorough analysis. For example, 
the VGG16 architecture can handle somewhat bigger 
dimensions but usually uses a default input size of 224x224 
pixels. This study used a dataset that was designed to 
categorize photos of building cracks. There are 5000 photos 
in this collection, and each one has 227x227 pixels in RGB 
channels. Pictures are divided into two classes: positive 
(crack) and negative (crack). There are 1000 photos in each 
category. The basic resource for training and testing 
algorithms targeted at fracture detection in building 
structures is this organized dataset. 
 

4.2.2 Image Processing 
After being imported, each image was processed 

separately with TensorFlow to create structured 
components. Then, with specific code, the Sci-Kit Image 
module in Python 3.8 was used to further improve and 
preprocess the photos. To be more precise, methods for 
improving crack features were used in the first stages of 
image processing (IP) crack detection. Deep learning (DL) 
approaches typically forgo conventional picture pre-
processing methods in order to reduce the amount of data 
needed for algorithmic learning. On the other hand, image 
processing techniques were used in this work to create four 
unique datasets that were designed for further analysis and 
model training. These datasets are very important in 
checking how well the deep learning models identify cracks 
in building photos, varying by light and scenario 
circumstances. 
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4.2.3 Proposed CNN Model 
In this research, a pre-trained CNN architecture was 

used. On the other hand, transfer learning using pre-trained 
architectures has been shown to significantly enhance 
model performance for varied fields. Because of its very 
good performance on ImageNet benchmarks, VGG16 just 
happens to be one of the pre-trained architectures mostly 
used for crack detection tasks. This paper proposes the 
CNN-based architecture, where fully connected layers are 
sprinkled over a series of convolutional blocks. Each block 
also contains a convolutional layer for filtering the output 
from the previous layer, with an activation unit supplying 
non-linearity and a pooling layer down-sampling the feature 
maps. The convolutional layers extract spatial information 
relevant to fracture detection by convolving the kernels or 
filters over the input data. This will ensure that the model 
efficiently acquires discriminative features from input photos 
and improves its capacity of detecting cracks in building 
structures with accuracy. 
 

4.2.4 Model Development 
All computational activities were done using a laptop 

equipped with RAM of 16GB and an AMD Ryzen 7 4800H 
CPU with Radeon Graphics, running at 2.90GHz. It had an 
NVIDIA GeForce GTX 1650 Ti GPU running a 64-bit 
operating system for creating the models. Anaconda Spyder 
4.1.5 was used as the development environment with 
Python 3.8. Python libraries used in this work were Keras 
2.4 and Tensorflow 2.5. With this, convolutional neural 
networks could be developed with Python scripts or Jupyter 
notebooks for a couple of environments. Almost all deep 
learning models were available with the Keras library, like 
the VGG16 model by [18] Specifically, this network was 
employed for the purpose of this research work in crack 
detection applications. Max pooling was done in order to 
enhance the performance in crack identification. The model 
will be trained with the Adam optimizer during a pre-defined 
training period. It uses a binary cross-entropy loss function, 
and training will be done on the entire dataset by setting 
200 photos per batch for each epoch. Fifty epochs of 
training are used so that the model learns properly and 
converges. The model's input layer specified variables like 
the size of the image, the number of channels, and the 
details of the dataset. To increase the amount of the 
dataset and reduce orientation biases, data augmentation 
techniques included flipping the data vertically and 
horizontally, rotations (0.2/2π), and sequential shifts. 

In order to make the pixel values (which range from 0 to 
255) compatible with the ImageNet weights used for pre-
training, a normalizing layer was also included. The pooling 
layers of the VGG16 architecture were used to transform 
the outputs of the basic model into vector representations 
once it was initialized with ImageNet weights. In order to 
improve model generalization, dropout regularization was 
used, which involves randomly deactivating filters during 
training. The model outputs were combined in the last 
dense classification layer to provide binary predictions, 
which assigned a value of 1 to cracked areas and a value of 
0 to non-cracked areas. Following prediction, a rounding 
function transformed discrete crack predictions 1 from 
probabilistic outputs 0.5. Taking everything into account, 
these configurations and techniques ensured that the 
VGG16 model was used consistently for effective crack 
detection. 
 

4.2.5 Model Analysis 
In this model study, the performance was evaluated 

based on how it had classified the data on binary class 
labels represented by the letters positive and negative. 
There were four other resulting outputs for each input case 

whereby the classifier predicted classes as either Yes or 
No. The false-positive predictions were represented by the 
false-positive instances, and on the other hand, the false-
negative predictions were represented by the false-negative 
instances. True positives represented the correct prediction 
of positive cases, while true negatives indicated correct 
forecasts of negative cases. For evaluation, in this paper, 
the following are used: Accuracy, True Negative Rate, 
Positive Predictive Value, Negative Predictive Value, True 
Positive Rate, and the F1 score, which is the harmonic 
average of recall and precision. These metrics give an all-
rounded description of the performance of the CNN 
classifier. The metrics have been computed in conventional 
ways based on TP, TN, FP, and FN. The comparison is 
also made with a baseline control to determine any 
improvements brought about by the CNN-based method, so 
as to validate its efficacy in enhancing classification 
accuracy and reliability. 
 

5. Results and Discussion 
By leveraging transfer learning in the development of 

multiple instances of CNN models, five different CNN 
models were obtained from two trainings using different 
image datasets. Each model was used to output a 
confusion matrix for comparison and evaluation of their 
performance. This section presents the performance 
measures produced based on the analysis of the confusion 
matrix run against the test dataset, which contains 5000 
sample pictures. The models were trained with validation 
data, and training accuracy was plotted over several epochs 
to show how the models developed and improved. For 
testing, RGB data was used as the control group. 
Somewhat surprisingly, the pre-processed photos contained 
only one brightness channel, and yet the pretrained VGG16 
model used RGB weights pre-trained on three channels: 
red, green, and blue. This was in anticipation of enhancing 
model performance through the expected effect of colour 
dependence on RGB values. 
 

5.1 Training of 50 EPOCHS 
To check for the probable benefits of longer training with 

respect to model accuracy in processing single-channel 
images, a training regimen of 50 epochs was used. Now, 
analyzing the confusion matrix, it is without exception that 
all such models that underwent such a prolonged train 
period outperformed their sibling models trained for fewer 
epochs. This discovery highlights how extensive training 
sessions are effective in improving the model's capacity to 
correctly analyze and categorize single-channel picture 
input. 

Fig.7 presents the graphical representation of the 
accuracy achieved over 50 epochs. Fig.8 displays the 
confusion matrix obtained after 50 epochs of training. Fig.9 
showcases the accuracy per class achieved after 50 
epochs of training. 

These figures collectively provide a comprehensive 
visual analysis of the model's performance metrics 
throughout the training process. 

 
 

 
Fig.7. 50-Epochs Accuracy 
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Fig.8. 50-Epochs Confusion Matrix 

 
Fig.9. 50-Epochs Accuracy Per Class 

 

5.2 Structural Crack Detection 
It has been trained on a huge number of sample photos 

to aid in crack detection. Fig.10 shows how, when fed into 
the program, a structural crack image is turned into a 
percentage-based bar graph. This graphical presentation 
clearly indicates the classification result, which marks the 
type of crack recognized as structural crack and as 
Concrete crack with 77% and 33% confidence level 
respectively.  

 
Fig.10. Structural crack detection 

 

5.3 Concrete Crack Detection 
Fig.11 illustrates the process of uploading a concrete 

crack image into the program with a large sample size and 
extensive training so that a bar graph may be plotted on a 
percentage basis for it to perform crack detection. Through 
this graphical representation, the result of the classification 
is successfully shown, such as the type of crack being 
identified as a concrete crack with a confidence level of 
100%. 

 
Fig.11. Concrete crack detection 

5.4 Floor Crack Detection 
Fig.12 illustrates the processing of a floor crack image 

that has been uploaded into the program, producing a bar 
graph with percentage basis using a large sample size of 
photographs. The image dataset has undergone extensive 
training to enable the crack identification. This graphical 
depiction, showing the type of crack that was determined as 
being a floor crack with 100 percent certainty level, 
effectively demonstrates the categorization findings. 

 
Fig.12. Floor crack detection 

 

5.5 Joint Crack Detection 
Fig.13 interprets step-by-step procedure to process a 

joint crack image uploaded into the tool in order to produce 
a bar graph with a percentage basis using a large sample 
number of photos. To facilitate the detection of cracks, the 
picture dataset underwent intensive training. This graph 
imitates the classification findings very well, stating that it is 
a joint crack with 100% certainty. 

 
Fig.13. Joint crack detection 

 

5.6 Plaster Crack Detection 
Fig.14 shows how a bar graph with a percentage basis 

can be derived from a plaster crack image that was inputted 
into the program using a large sample number of 
photographs. The dataset image was then trained 
exhaustively to allow the system to identify the cracks. This 
graphical display served well in presenting the classification 
results by indication of the type of crack that was identified 
and classified to be a plaster crack with 100% certainty. 

 
Fig.14. Plaster crack detection 
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6. Conclusion 
This study examined the effects of image pre-

processing methods on deep learning (DL) crack detection 
ability using a dataset of 5000 images. The results showed 
that the CNN model's capacity to identify cracks in concrete 
structures was not significantly impacted by the use of a 
pretrained model with RGB weights. A CNN architecture 
was built using the SciKit Image Python library, and the 
original photo dataset was split up into five different 
comparison sets using the Keras Python package and 
pretrained VGG16. The model's F1 score after 50 epochs 
was 99.549%, which is similar to the RGB model's score of 
99.533% and highlights the color independence of crack 
detecting features. Although color had little influence, the 
study showed possible biases induced by RGB-weighted 
pretrained models, hence future work should validate using 
fully segmented and trained models. The study's analysis 
was carried out with pretrained models using RGB weights, 
concentrated on the three RGB channels. Subsequent 
studies are to examine the procurement of weights 
particular to each channel and assess the influence of IP-
FCN pixel segmentation on pixel precision. Furthermore, 
contrasting different pretrained models like VGG11, 
VGG19, and AlexNet may provide information on how 
effectively they perform in tasks involving deep learning 
based crack detection. 
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