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Artificial neural network model for estimation  
of relative airplane altitude 

 
 

Abstract. The main purpose of the publication is to develop an artificial neural network model capable of estimating aircraft altitude based on 
accelerometer and gyroscope readings. The developed network structure uses LSTM, SE and transform encoder layers. Measurement data for 
training, validation and testing of the neural network were obtained from tests using an original measurement system developed. The developed device 
set was placed on the Koliber 150 aircraft. In order to verify the correctness of the model, the values estimated by the model were compared with 
those estimated by the Kalman filter algorithm using the double integration algorithm. The developed artificial neural network model has an overall 
estimation error of 7.43m, while the error for the Kalman filter was 20.27m. It has been shown that the use of the proposed model allows achieving 
satisfactory accuracy in aircraft altitude estimation due to the model's ability to adapt to the drift in the Inertial Measurement Unit (IMU). 

 
Streszczenie. Głównym celem publikacji jest opracowanie modelu sztucznej sieci neuronowej, który będzie w stanie oszacować wysokość samolotu 
na podstawie wskazań akcelerometru i żyroskopu. Opracowana struktura sieci wykorzystuje warstwy LSTM, SE i enkodera transformatorowego. Dane 
pomiarowe do uczenia, walidacji i testowania sieci neuronowej uzyskano z badan za pomocą opracowanego autorskiego system pomiarowego. 
Opracowane urządzenie umieszczono na samolocie Koliber 150. W celu weryfikacji poprawności modelu wartości oszacowane zostały porównane z 
wartościami, które oszacowano na podstawie algorytmu filtrem Kalmana z zastosowaniem algorytmu podwójnego całkowania. Opracowany model 
sztucznej sieci neuronowej charakteryzuje się ogólnym błędem estymacji wynoszącym 7.43m, zaś błąd dla filtru Kalmana wyniósł 20.27m. Wykazano 
że zastosowanie zaproponowanego modelu pozwala na osiągnięcie zadowalającej dokładności przy estymacji wysokości samolotu dzięki zdolności 
modelu do adaptacji do dryftu w Inercyjnej jednostce pomiarowej (IMU). (Model sztucznej sieci neuronowej do szacowania względnej wysokości 
samolotu) 

 
Słowa kluczowe: Sztuczna sieć neuronowa, szacowanie wysokości, statek powietrzny, inercyjna jednostka pomiarowa  
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Introduction 
Satellite navigation is a world-renowned system that 

allows to determine the position of a given object in space 

using satellites. GNSS (Global Navigation Satellite Systems) 

receivers are characterized by low refresh rates in the range 

of 1-10 Hz. At higher refresh rates, there is a decrease in the 

position accuracy of the receiver [1]. Higher refresh rate is 

required for high-precision applications with fast-moving 

objects. Inertial navigation systems (INS) are used for this 

purpose. They are also used in the event of problems with 

the satellite navigation system. INS uses data from the 

Inertial Measurement Unit (IMU) systems to determine the 

position of a given object. Devices of this type are an 

independent system that ensures uninterrupted 

determination of the position of a given object in space, 

therefore they have been used in areas such as: autonomous 

navigation, aviation applications and dynamic vehicle 

control [2]. 

A frequently used method of determining the position of an 

object in time is the double integration method [3]. Sensor 

data is subject to dynamic noise and bias, therefore filters 

such as the Kalman filter (KF) or the alpha-beta filter are 

often used. They are responsible for compensation of the 

noise on the sensor reading. The accuracy of these solutions 

is significantly affected by the quality of the sensor [3]. 

Neural networks are used in many fields, such as quality 

management, mechanical engineering and automotive 

application [4,5]. They allow to perform such tasks as 

classification, detection, segmentation, regression and signal 

filtering. Methods have been developed that allow supporting 

the Kalman filter with the use of artificial neural networks 

(ANN) such as [6,7]. These methods integrate artificial neural 

networks with the Kalman filter. Adjusting the filtration 

parameters consists in finding the relationship between the 

processed data, which is why ANNs are a great solution that 

allows to find this relationship. Artificial neural networks, 

based on the output data, try to reproduce the output data 

with the smallest possible error, so the performance of fitting 

the nonlinear model with use of ANN is excellent in many 

cases. The performance of ANN is highly dependent on the 

data as well as the structure of the network itself. This 

approach allows solving non-linear time-varying problems 

without the need for an external mechanism model. For this 

reason, ANNs are a helpful tool for process and noise 

modeling, and also allow the reconstitution of unknown 

elements in the Kalman filter [8]. 

The authors used the prototype IMU measurement system 

to develop an algorithm using an artificial neural network to 

estimate Koliber 150 aircraft flight altitude during climb 

phase. The prototype device is characterized by small 

dimensions and cost effectiveness [9]. Training the network 

will take place in the process of supervised learning by 

applying input data in the form of IMU indication and position 

data using a high-accuracy sensor fusion GPS module. The 

Koliber 150 is a low-wing aircraft for training and sports 

purposes. 

Periods of time in which the aircraft performed the 

following maneuvers were used for data analysis: 

● takeoff/climb; 

● cruise; 

● descent/approach; 

Acceleration in 3 axes as well as pitch and roll angles were 

used to reconstruct the change in aircraft altitude. The ZED-

F9R GNSS receiver was used to collect the data. This 

module uses concurrent GNSS receivers and is capable of 

tracking multiple constellations. It has a multi-band front-end 

architecture that allows it to receive four major constellations 

– GPS (Global Positioning System), GLONASS, Galileo and 
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BeiDou, as well as SBAS (Satellite Based Augmentation 

System) and QZSS (Quasi-Zenith Satellite System) satellites 

simultaneously. 
 

Structure of the neural network 
The basic assumption of the developed algorithm is to 

create a light neural network that will allow to determine the 

height of the aircraft based on the IMU indication. During the 

development of the structure, the following layers were 

considered: 

● LSTM – Long-Short Term Memory; 
● Transformer encoder; 
● SE – Squeeze and Excitation.  

The LSTM (Long-Short Term Memory) module uses loops 

that allow information to flow from previous states to 

subsequent states. The LSTM mechanism has gates that 

allow information to be stored for many iterations. The input 

data for the current moment together with the output data 

from the previous state are used to determine the output data 

for the current state. The LSTM module consists of 3 gates 

[10,11]: 

● forget gate; 
● input gate; 
● output gate. 

Weights and biases are assigned to the values before 

passing through the gate. These values go through the 

activation function. The next step is to determine what new 

information will be stored in the LSTM cell. The vector 

created by activation functions is a candidate to be 

remembered. The input gate determines how much influence 

the candidate will have on changing the state of the given 

LSTM cell. The output value is based on the output 

information from the previous state and the weights, this 

information goes through the sigmoidal function. The 

resulting value is multiplied by the current state of the cell, 

which has passed through the hyperbolic tangent function 

[12]. 

The encoder transformer consists of two modules with 

residual connections. The first module is made up of a 

summation layer, normalization layer and multi-head 

attention (MHA). The second module is similar to the first one 

except that it has a feed-forward layer and no MHA The three 

learning-related matrices 𝑊𝑄,𝑊𝐾 and 𝑊𝑉 are used to project 

the input values in order to determine self-attention. 𝑄, 𝐾 and 

𝑉 are processed values. For a particular output value 𝑄, the 

attention mechanism determines the weights, which 

establish the relative importance of each value in a specific 

series - 𝐾. The input data 𝑉 is multiplied by the calculated 

weights [13].  

The SE module is responsible for feature recalibration. 

The use of this module is possible for any transformation that 

maps the input values 𝑋 to 𝑈 such that 𝑈 ∈  𝑅(𝑊×𝐶) , where 

𝑊 × 𝐶 is dimension of input data. The 𝑈 features first go to 

the descriptor, which is responsible for their aggregation 

along the selected dimension. The descriptor creates global 

embeddings of the channel distribution function. The data 

after aggregation serve as input data for the self-gate 

mechanism (a layer of densely connected neurons). This 

mechanism is responsible for creating a set of weights that 

will be used to modulate the values for each channel [12]. In 

order to develop the structure, 3 models were created: 

● model using a transformer encoder; 
● model using LSTM; 
● model consisting of transformer encoder, LSTM 

and SE. 

The target number of epochs for each model was 30, the 

iterations in which the network reached the smallest value of 

the loss function were selected. The networks were 

compared due to the average height estimation error. On this 

basis, the final structure of the network was selected. 

Comparison of the discussed models is presented in table 1. 
 
Table 1. Comparison of ANN models 

ANN TYPE 
Transformer 

encoder 
LSTM 

Transformer 
encoder + 

LSTM + SE 

Estimation 
ERROR [m] 

39,61 19,87 5,67 

Trainable 
parameters 

4 751 20 129 24 942 

Non-trainable 
parameters 

0 0 10 

Total 
parameters 

4 751 20 129 24 952 

 

The final structure of the network consists of 2 branches. 

In the first branch, the input data goes to the transformer 

encoder, in the next phase, the information goes to the CBT 

module (convolution 1D, normalization of batch, activation 

function - hyperbolic tangent). The next step is two layers of 

bidirectional LSTM. Output from this branch is a 1D 

convolution with shape (100, 1). In the second branch input 

data goes to 1D convolution layer and SE module. Data from 

both branches is concatenated – shape (100,6). Output layer 

is a 1d convolution. Figure 1 shows the structure of the 

network, taking into account the shape of the layers. 

 
Fig. 1. Structure of the neural network 

 

Training 

The input data to the network were  time courses of 

accelerations along the 𝑥, 𝑦, 𝑧 axes, as well as pitch and roll 

angles. GPS indications - the altitude of the aircraft were 

used as the truth data for the training process. 

For the training process, the dataset of 10 hours of flight 

was divided into training, validation and test sets. An 

additional 100 samples for every single set of measurement 

are stored to reduce the impact of the overfitting 

phenomenon, a random data shift was applied for each of the 

measurements. The shift value changes when the epoch 

ends during the training process.  

Pre-processing takes place before data is fed into the 

neural network. For this purpose a standardization method 

was used. This process normalizes input data to have zero 
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mean and unity variance. 

Normalization methods help to gradually stabilize the 

gradient descent by placing different features on a similar 

scale. This helps in faster convergence of the model while 

maintaining the current value of the learning rate parameter 

or allows the use of a higher value of this parameter. 

In the training process, the ADAM algorithm was adopted 

as the optimizer. The ADAM algorithm is responsible for 

adaptive moment estimation. It is a combination of two 

descent gradient methodologies: momentum and RMSP 

(Root Mean Square Propagation). The ADAM algorithm with 

the following parameters was used 𝛼 = 0,001; 𝛽1 = 0,9, 𝛽2 =

0,999;  𝜖 = 10−8, values were adopted according to [13]. 

Logarithm of the hyperbolic cosine of the prediction error 

(log-cosh) was chosen as the loss function. As discussed by 

[16] this function belongs to the class of robust estimators. 

This means that the function prefers solutions close to the 

median rather than the mean value and is more tolerant to 

outliers. 

In the process of training the neural network, the target 

number of epochs was 150. Due to the lack of decrease in 

the value of the function for the loss validation set for 30 

epochs, the weights obtained for epoch 43 were selected.  

After the training network reached mean squared error of  

0,3571 for the test set and 0,3235 for the set intended for 

training. In the case of the value of the loss function 0,1494 

was achieved for the test set and 0,1185 for the training data 

set. 
 

Kalman Filter 

Kalman filter is a state estimator, which is able to extract 

information from noisy data. The principle of operation of the 

algorithm consists of 2 steps: prediction and updating. In the 

prediction step, the algorithm is estimating the current states 

variables and their uncertainties. Previous states of the 

system are used to estimate subsequent states. In update 

step, the Kalman filter uses the measurement data in the 

current time step to estimate the current state of the system. 

An example of using the Kalman filter on the collected data 

is shown in Figure 2. 

 
Fig. 2. Example of using the Kalman filter on the collected data 

Results 

For analysis 10 segments were designated for the 

measurements for each of the 3 groups - climb, cruise - level 

flight, and descent. For the purpose of comparison, 9 

characteristic points were used, which determine the position 

of the aircraft with the use of a GNSS receiver. The data 

processed using the artificial neural network was compared 

with those processed using the Kalman filter. Comparison of 

data for an example measurement for is shown in figure 3. 

 

 
Fig. 3. a) Flight altitude estimation  b) Absolute error 

 

In the case of the climb phase, for the results processed 

using the neural network, there was no increasing error as in 

the case of the Kalman filter. For the first two measurement 

points, the network showed a larger average error than the 

Kalman filter. However, for subsequent measurements, the 

Kalman filter had a much larger altitude estimation error than 

data processed with the use of artificial neural network. For 

the entire measurement set, the mean absolute error of the 

neural network was 5.48m, and for the Kalman filter it was 

11.24m. Only for the first measurement section, the neural 

network showed a greater average error than the Kalman 

filter. The mean absolute error for each of the measurement 

sections for the climb phase is shown in Figure 4.  

 

 
Fig. 4. Mean absolute error per measuring point for climb phase 

 

During the cruise phase, the Kalman filter tended to 

overestimate the relative change in altitude. Therefore, its 

indications significantly differed from the measurement 

points. The artificial neural network maintained a similar 

value of the mean absolute error for the measurement points. 

The mean absolute error for the measurement points is 

shown in Figure 5. For the measurement segments in which 

the aircraft cruised - small changes in altitude, the neural 

network was characterized by an average absolute error of 

3.77m, and the error for the Kalman filter was 22.69m. There 

were two measurements in the measurement set, for which 

the Kalman filter significantly overestimated the relative 

height change. The mean absolute error for each of the 

measurement sections for the climb phase is shown in 

Figure 9.  

The last flight phase analyzed was the descent/approach. 
Again with the Kalman filter, there was a cumulative error. 
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Fig. 5. Mean absolute error per measuring point for cruise phase 

 

The neural network for the first two measurement points 

showed a greater error than the Kalman filter. The mean 

absolute error for the measurement points is shown in 

Figure 6. 

 
Fig. 6. Mean absolute error per measurement for descent/approach 

 

The average absolute altitude estimation error for the 

discussed flight phase in the case of the neural network was 

13.98 m, and for the Kalman filter the error was 26.87m. In 

this phase of the flight, both in the case of the neural network 

and the Kalman filter, the error was the largest.  
 

Conclusion 

In order to demonstrate the correctness of the selected 

model, the values obtained using the Kalman filter method 

and the developed algorithm using the neural network were 

compared. The Kalman filter is characterized by a much 

larger error in the estimation of the relative change in the 

altitude of the aircraft, and thus in the overall estimation of 

the altitude. A cost-effective prototype IMU set was used for 

the measurements, the parameters of which allowed 

obtaining satisfactory results in obtaining an artificial neural 

network. 

The average error for all measurements, for the ANN 

model, was 7.43m, while for the Kalman filter using double 

integration, an error of 20.27m was obtained. During the tests 

in the aircraft, quite large vibrations from the engine were 

observed, which were transferred to the entire structure of 

the aircraft. The mentioned vibrations affected the reading 

from the IMU, which in the case of the Kalman filter translated 

into a larger error. The neural network learned the features 

of the signal from the tested IMU system and in the training 

process it got “used” to the occurring vibrations from the 

engine.  

The use of a transformer encoder allowed the creation of 

attention maps for the input data. The maps were used to 

emphasis the importance of the selected features of the input 

data. The network’s input data, in the form of a tensor of 

dimensions (100,5), is processed to obtain a relative change 

in the height of the aircraft in the form of a tensor (100,1). The 

network estimates the height change as a sequence of 

successive values for the entire input data tensor. LSTM 

modules store information from previous states, which allows 

the network to refer to the previous state. 
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