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Comparison of elastic drive shaft models 
 
 

Abstract. As part of this work, a computer simulation of the operation of an electromechanical system consisting of an electric motor coupled to a 
working machine via an elastic drive shaft was carried out. The simulation tests conducted and the test results obtained made it possible to compare 
the dynamics of the abovementioned electromechanical system represented by the same model of an electric motor and different models of the 
working mechanism, consisting of an elastic drive shaft and a load torque setter. In the simulation tests, the following models were considered for the 
elastic drive shaft: a distributed-parameter model based on the transmission line equations and lumped-parameter models, including multi-mass and 
two-mass models. 
 
Streszczenie. W ramach tej pracy przeprowadzono komputerową symulację działania układu elektromechanicznego składającego się z silnika elektrycznego 
sprzężonego z maszyną roboczą za pośrednictwem sprężystego wału napędowego. Przeprowadzone badania symulacyjne i uzyskane wyniki badań 
pozwoliły na porównanie dynamiki ww. układu elektromechanicznego reprezentowanego przez ten sam model silnika elektrycznego i różne modele 
mechanizmu roboczego, składającego się ze sprężystego wału napędowego i zadajnika momentu obciążenia. W badaniach symulacyjnych 
uwzględniono następujące modele sprężystego wału napędowego: model o rozłożonych parametrach oparty na równaniach linii przesyłowej oraz 
modele o parametrach skupionych, w tym modele wielomasowe i dwumasowe. (Porównanie modeli sprężystego wału napędowego) 
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Słowa kluczowe: systemy elektromechaniczne, sprężyste wały napędowe, silnik BLDC, modelowanie i symulacja. 
 
 

Introduction 
Electric drives are used in all industries and are the 

dominant consumer of electric energy. For this reason, the 
failure-free operation of these systems is essential. Analysis 
of the operating states of drive systems is often related to 
ensuring their operational safety. The key issue is to detect 
the occurrence of resonance and resonance-like phenomena 
as the most dangerous for the system. Dangerous phenomena 
also include significant-amplitude vibrations occurring in 
drive systems, especially in their working mechanisms, which 
are caused by sudden changes in driving torque. In such 
operating conditions, failures of mechanical components most 
often occur. Failure to take the abovementioned phenomena 
into account may lead not only to damage to the electric 
drives themselves, but sometimes to the suspension of 
production in the entire plant. Therefore, comprehensive 
research is needed to analyze the operating states of 
electrical and electromechanical systems. To achieve such 
a goal, it is necessary to conduct complex research, which 
is long-lasting and very expensive. The alternative is the 
analysis of the tested system represented in the form of a 
mathematical model. A mathematical model describes a 
physical object with a system of differential or algebraic 
equations or a combination of them. 

Electric motors, which are part of electric drives, are 
coupled to working machines via drive shafts. Depending on 
the length and cross-section, drive shafts may have different 
susceptibility to moment of torsion, which determines the size 
of the angle of twist [1]. In the case of a short drive shaft, the 
size of the angle of twist is insignificant and can be 
neglected by assuming a rigid mechanical connection, while 
in the case of a longer drive shaft, the size of the angle of 
twist cannot be neglected and such connection should be 
considered elastic. Distributed-parameter models and 
lumped-parameter models are used to mathematically 
describe elastic drive shafts. The first group includes wave 
models [2], models based on the formal analogy between 
the drive shaft and the electric transmission line [3] and 
models based on the calculus of variations [4]. The second 
group includes two-mass models – with masses concentrated 
on both sides of the shaft [5] and multi-mass models, i.e. 
models with discreetly distributed masses concentrated 
along the shaft axis [1]. Distributed-parameter models are 
constructed from partial differential equations that can be 

solved analytically, but this is both tedious and time-
consuming. An alternative is to use the method of lines 
(MOL), which involves: spatial discretization of a given 
equation (usually using the finite difference method), which 
leads to a system of ordinary differential equations, and 
then integration of the obtained equations with respect to 
time using numerical methods [1]. 

The electric transmission line equations based distributed-
parameter drive shaft model [3], with the masses of the 
drive motor’s rotor and the moving part of the working 
machine both attached to the ends of the shaft, is 
sometimes confused with the model of a two-mass structure 
[6,7]. Meanwhile, there is a fundamental difference between 
these models, which is related to the omission of the shaft 
mass in the two-mass structure. In this case, the omitted 
shaft mass is usually divided into two equal parts, which are 
attached to both ends of the shaft as lumped masses. 
Unlike a two-mass structure, in a distributed-parameter 
structure, the shaft mass is distributed linearly along the 
shaft axis and is continuous. Therefore, in a distributed-
parameter structure, wave phenomena may occur when 
transmitting mechanical power along the shaft, and the 
reaction to the appearance of torque on one side of the 
shaft occurs with a delay on its other side, i.e. a certain time 
after the appearance of torque. In a two-mass structure, a 
similar reaction is immediate due to the omission of the 
shaft mass, i.e. a torque of the same value but with the 
opposite direction appears on both sides of the shaft at the 
same time. For this reason, wave phenomena do not occur 
in the two-mass structure. Based on the known shaft length, 
it is possible to estimate the frequency of the forced 
vibration of the torque, or torque component, applied to the 
beginning or end of the distributed-parameter drive shaft, at 
which wave phenomena will begin to play an important role: 

f = v/4l. Assuming l = 0.66 m and the speed of mechanical 

wave propagation along the steel shaft v = 3102 m/s, 

corresponding to a mass density of 7850 kg/m3 and a shear 

modulus of 80 GPa, f = 1209 Hz is obtained. 

In this study, a simulation of the operation of an 
electromechanical system consisting of a brushless direct 
current (BLDC) motor coupled to a working machine via an 
elastic drive shaft was performed, with the role of the 
working machine being played by a load torque setter at the 
end of the shaft at the point of attachment of the working 
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machine's moving part. Two cases of the abovementioned 
moving part were considered: inertial moving part, i.e. with 
an additional rotating mass attached to the end of the drive 
shaft, and non-inertial moving part, i.e. without additional 
mass attached. The simulation tests carried out and the 
results obtained made it possible to compare the dynamics of 
the abovementioned electromechanical system represented 
by the same model of an electric motor and different models 
of the working mechanism consisting of an elastic drive 
shaft and a load torque setter. In the simulation tests, the 
following models were considered for the elastic drive shaft: 
a distributed-parameter model based on the transmission 
line's equations and lumped-parameter models – multi-
mass and dual-mass.  
 
Models of elastic drive shafts 
Two-mass, lumped-parameter model 

Representing real mechanical systems with continuous 
mass distribution using models of lumped parameters based 
kinematic structures causes discrepancies in the analysis 
results compared to accurate models, but significantly 
simplifies the analysis. Additionally, these discrepancies 
decrease as the number of lumped parameters in the model 
increases. Representing the drive system containing an elastic 
element using a model with two lumped masses (two-mass 
system – Fig. 1) allows for maximum simplification of the 
model, but it cannot be used in all cases. Such a mathematical 
description works best in the case of mechanical systems in 
which the electric motor’s rotor is coupled to the moving part 
of the working machine via a long shaft with a negligible 
moment of inertia, as opposed to significant moments of 
inertia of the mentioned elements of the mechanical system. 
 

 
 
Fig. 1. Kinematic structure of a two-mass system (two lumped masses 
coupled via a long shaft with a negligible moment of inertia) 
 

The equations for the considered structure are as follows: 
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where M1, M2 are the external torques applied to both sides 

of the shaft, in particular, the driving torque from the motor 

and the load torque from the working machine, 1, 2 are 

the angular velocities at the points of application of external 

torques to the shaft, L1, L2 are angular momentums, with L1 

= J11, L2 = J22, from which 1 and 2 should be 

calculated and substituted into equations (1), J1, J2 are the 

moments of inertia defined for the rotor of the drive motor 

and the moving part of the working machine, D1, D2 are the 

coefficients of mechanical friction defined for the bearings, 

D12 is the coefficient of viscous friction inside the shaft,  is 

the angle of shaft twist, Mc is the moment of shaft torsion, 

with Mc = Cs, which must also be substituted into 

equations (1), Cs is the torsional-elasticity coefficient. The 

form of equations (1) allows in the simplest way to take into 

account the possible changes in moments of inertia as a 
function of angular velocity or angular position, as well as 
the changes in the torsional elasticity coefficient as a function 
of the angle of shaft twist. 
 
Multi-mass, lumped-parameter model 

The kinematic structure of the elastic drive shaft, divided 

into m elements as a result of discretization, is depicted in 

Figure 2, where J1,…, Jm, Cs,12,…, Cs,m-1,m, D12,…, Dm-1,m 

are the moments of inertia, torsional elasticity coefficients 
and mechanical friction coefficients of respective elements 

of the divided drive shaft; D1, Dm are the mechanical friction 

coefficients defined for the bearings. 
 

 
 
Fig. 2. Lumped parameter, multi-mass kinematic structure of elastic 
drive shaft 
 

For the considered drive shaft, m equations of torques 

and moments of torsion, as well as m – 1 equations of 

angles of twist can be written: 
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Distributed-parameter model 

In the article [3], the telegraphers’ equations (3) with 
boundary conditions (4) and their solution (5), (6) defined by 
d'Alembert were proposed for the mathematical description 
of the drive shaft: 
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where: v is the phase velocity given in m/s, == cSJv 1  

G= , J  , cS  are the linear densities (density per unit 

length) of the moment of inertia and torsional susceptibility 

coefficient, )/( JGSc =  ,  is the mass density given in 

kg/m3, G is the shear modulus given in GPa, M1, Mm are 

the moments of torsion at the beginning and end of the 

shaft, respectively, ω1, ωm are the angular velocities at the 

beginning and end of the shaft, zv is the wave impedance, 

JvSJz cv == / , l is the shaft length. The abovementioned 

moments of torsion can also be presented in discrete form: 
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with the predetermined initial conditions M1(0), Mm(0), 

1(0) and m(0), where: n is the number of modelling 

steps, this is a number that expresses the time of passage 

of the mechanical wave through the shaft, n = l/(vh), h is 

the width of the modelling step size, j = 0,1,… . The time of 

passage of the mechanical wave through the shaft, 

corresponding to the number n, is given in equations (3) 

and (4) as l/v. 

The angular velocities at the beginning and end of the 
shaft can be calculated from the equations of motion for the 
electric motor and the working machine: 
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where: Me(t) and Mw(t) are the motor torque and the load 

torque from the working machine given in N·m, Le = Je1, 

Lw = Jwm, from which 1 and m should be calculated and 

substituted into equations (9) and (10) , Je and Jw are the 

moments of rotor inertia for the electric motor and the 

working machine given in kg·m2, D1 and Dm are the 

coefficients of friction in the bearings. The terms D1m(1 – 

m) and Dm1(m – 1) with lumped parameters D1m and 

Dm1 have been introduced into equations (9) and (10) to 

take into account the viscous friction inside the shaft. 
The drive shaft model based on the transmission line 

equations with the d'Alembert solution is an alternative to 
the multi-mass model based on ordinary differential 
equations as well as to the distributed parameter model 
based on partial differential equations. The advantage of 
the presented model is its simplicity, as it is based on 
discrete algebraic equations that do not require numerical 
integration, unlike models based on differential equations. 
 
Computer simulation results 

The results of a computer simulation of the operation of 
an electromechanical system consisting of a 4 kW BLDC 

motor, an elastic drive shaft and a mass of Jm = 0.167 kgm2 

attached to the end of the drive shaft are shown in Figures 3 
to 6. The moment of inertia of the electric motor’s rotor was 

assumed to be Je = 0.025 kgm2. The parameters of the steel 

drive shaft are as follows: length 0.66 m, diameter 0.02 m, 
mass density 7850 kg/m3, shear modulus G = 80 GPa. 

In the case under consideration, setting the rotational 
speed of the BLDC motor is performed by changing the 

supply voltage (changing the duty cycle of the pulses 
controlling the electronic commutation of the BLDC motor 
using the PWM method). The BLDC motor control system 
considered in the simulation studies is not equipped with 
closed speed and current (or torque) control loops. The 
result of the lack of a closed current (or torque) control loop 
are the torque ripples (see Figure 5). In the process of 
starting the electric motor by changing the supply voltage 
according to the time ramp, the frequency of these ripples 
increases. At instant approximately 0.22 s, this frequency 
reaches twice the value of the natural frequency of the 
working mechanism containing the elastic drive shaft, which 
results in the system being stimulated to vibrate (the 
increased amplitude of torsional moment oscillations can be 
observed in the Figure 5). Resonance and resonance-like 
phenomena occur. 

In the case of a drive shaft to the ends of which the 
masses of the rotor of the electric motor and the moving 
part of the working machine with significant inertias 

compared to the shaft are attached, i.e. Je >> Js and Jm >> 

Js, where Js is the moment of shaft inertia, the time 

responses of the electromechanical system under 
consideration, i.e. the motor torque, rotational speed and 
moment of torsion are almost identical for each drive shaft 
model, which can be seen from Figures 3 to 5.  
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Fig. 3. Torque and rotational speed of the BLDC motor’s rotor and 
moment of torsion at the beginning of the drive shaft during the 
start-up of the motor from the time t = 0 s and during operation 
under the rated load (26 Nm) from the time t = 2.2 s (time 
responses of all models overlap) 
 

For the distributed-parameter model and the multi-mass 
model, there are differences in the moments of torsion at 
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the beginning and end of the shaft (Fig. 6) unlike the two-
mass model. These differences are not significant 
compared to the rated motor torque (26 Nm). It is worth 
noting that the abovementioned the differences are twice as 
large in the case of the distributed-parameter model. 
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Fig. 4. Rotational speed of the motor in the time interval t = 
0.3…0.36 s; black line – distributed-parameter model, green line – 
multi-mass model, red line – dual-mass model 
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Fig. 5. Torque of the BLDC motor in the time interval t = 0.3…0.34 
s and moment of torsion at the beginning of the drive shaft in the 
time interval t = 0.2…0.5 s 
 

Also, very similar time responses, including motor torque 
and rotational speed (Fig. 7), can be observed for each drive 
shaft model in the absence of additional mass attached to 

the end of the shaft (Jm = 0). The exception are changes in 

moments of torsion following a step (non-inertial) change in 
load at the end of the shaft (Fig. 8). In the case of a two-
mass structure, at the shaft end the presence of a lumped 
mass equal to half of the omitted shaft mass was taken into 
account, in accordance with the rules for formulating a 
model of such a structure. 

In the case of a distributed-parameter model, at the 
beginning of the shaft it can be observed a delayed reaction 
(black line in Figure 9) to a load torque step change at the 
end of the shaft (red line). This reaction can be observed 

after approximately 0.2 milliseconds from the time in which 

the load torque step change occurred at t = 2.2 s. This is 

the time (0.2 milliseconds) needed for the wave to travel 
from the end to the beginning of the shaft. This time can be 
calculated based on the length of the shaft and the speed of 
propagation of the mechanical wave inside the steel shaft. 
For the previously assumed values of the shaft length of 
0.66 m and the speed of 3192 m/s, the calculated time is 
0.207 ms. 
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Fig. 6. Difference in moments of torsion at the beginning and end of 
the drive shaft, top – distributed-parameter model, bottom – multi-
mass model 
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Fig. 7. Motor torque and rotational speed of the BLDC motor rotor 

during start-up from t = 0 s and during operation under the rated 

load applied to the end of the drive shaft (26 Nm) from t = 2.2 s 

(non-inertial load) 
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Similar phenomena can be observed in the case of the 
multi-mass model (Figure 10), which combines the features 
of a high-order inertial structure and an oscillatory structure. 
Meanwhile, the two-mass structure is only oscillatory in 
nature and does not undergo wave phenomena (Figure 8, 
red line). It is worth mentioning that in the case of a two-
mass structure, the changes in the moment of torsion at the 
beginning of the shaft are the same as those at the end of 
the shaft. This results directly from the equations describing 

the two-mass structure (1): the same moments of torsion Mc 

are in both moment balance equations in (1). 
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Fig. 8. Moments of torsion at the beginning of the drive shaft after 

applying a rated load of 26 Nm to the end of the shaft at t = 2.2 s; 

black line – distributed-parameter model, green line – multi-mass 
model, red line – dual-mass model 
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Fig. 9. Moments of torsion at the beginning (black line) and at the 
end (red line) of the drive shaft after applying a rated load of 26 Nm 

to the end of the shaft at t = 2.2 s – distributed-parameter model 
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Fig. 10. Moments of torsion at the beginning (black line) and at the 
end (red line) of the drive shaft after applying a rated load of 26 Nm 

to the end of the shaft at t = 2.2 s – multi-mass model 

Conclusions 
Electromechanical systems consisting of electric drives, 

working machines and mechanisms containing long elastic 
drive shafts, are characterized by complex dynamics that are 
determined by all system components. Mathematical modelling 
of such systems involves formulating mathematical models 
for each component of the system and combining these 
models into a single whole. Particularly complex mathematical 
descriptions may appear in the case of elastic drive shafts, 
which cannot be described by the equations of a two-mass 
structure. In such a case, multi-mass models or distributed-
parameter models can be used to mathematically describe 
the elastic drive shafts. These models can be used to 
analyze the influence of control and load on the 
electromechanical system, as well as emergency states 
related to the occurrence of resonant or resonant-like 
phenomena. The simulation results can be used to design 
electric drives, as well as to optimize the operation of 
electromechanical systems. 

This article presents a comparative analysis of various 
models of elastic drive shaft. In the case of a distributed-
parameter model, the reaction at the beginning of the shaft 
to a change in the load torque at the end of the shaft occurs 
a certain time after this change presence. This is the time 
required for the wave to travel from the end to the beginning 
of the shaft. Similar phenomena can be observed in the 
case of the multi-mass model. Meanwhile, the two-mass 
structure is oscillatory and does not undergo wave 
phenomena. 
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