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Application of electrical tomography in technological processes 

 
 

Abstract. The article focuses on developing an advanced electrical impedance tomography (EIT) system designed for optimizing and controlling 
technological processes. The authors present an innovative tomographic system that integrates modern hardware solutions with sophisticated signal 
processing techniques and machine learning algorithms, specifically multi-branch neural networks.  
 
Streszczenie. Artykuł koncentruje się na opracowaniu zaawansowanego systemu tomografii impedancji elektrycznej (EIT) przeznaczonego do 
optymalizacji i kontroli procesów technologicznych. Autorzy przedstawiają innowacyjny system tomograficzny, który integruje nowoczesne 
rozwiązania sprzętowe z zaawansowanymi technikami przetwarzania sygnałów oraz algorytmami uczenia maszynowego, w szczególności z 
wykorzystaniem wielogałęziowych sieci neuronowych (Zastosowanie tomografii elektrycznej w procesach technologicznych).  
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Introduction 
This research presents an innovative tomographic 

system combining modern hardware technologies, 
sophisticated signal processing methods, and machine 
learning algorithms. The goal was to design a system 
capable of non-invasive, real-time monitoring of production 
environments, enabling enhanced diagnostics and control in 
a range of industrial settings [1-6]. Key to this approach was 
the integration of advanced microcontroller architectures 
and FPGA systems, which ensure the system can handle 
large volumes of data at high speeds, facilitating real-time 
analysis and remote reconfigurability. These features make 
the system highly adaptable, supporting a wide array of 
applications across different industries. 

A major focus of the research was the development of 
image reconstruction algorithms based on multi-branch 
neural networks, which have proven effective in handling 
complex data and improving the quality and accuracy of 
tomographic reconstructions. The multi-branch 
configuration divides data processing across several 
independent branches, each focusing on different signal 
aspects, before combining the results to produce highly 
detailed and accurate images. To evaluate the relative 
effectiveness of the multi-branch configuration, an 
additional model was constructed and trained based on a 
single-layer LSTM neural network [7].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Tomograph with a test tank and settings: excitation 
frequency 10kHz, excitation current 1mA, number of sampling 
periods 3. Number of measurement electrodes 32. Configuration of 
measurement electrodes 2x16. 2.5D measurement sequence. 
 

This allowed for a direct evaluation of the impact of the 
convolutional layers on the reconstruction process, thereby 
providing a more comprehensive understanding of each 
architectural configuration's relative strengths and 
limitations. By comparing the performance of the multi-
branch neural networks with the LSTM model, the research 
sheds light on the benefits of using advanced network 
architectures for tomographic image reconstruction [8,9]. 
The research results demonstrate the potential of this 
integrated tomography system in industrial diagnostics and 
quality control. The application of multi-branch neural 
networks for image reconstruction, combined with the 
flexibility of modern hardware, opens up new opportunities 
for process engineering and production control. The 
developed system offers improved accuracy and efficiency 
in monitoring production processes, paving the way for 
more innovative and sustainable industrial operations [1]. 
 
Materials and methods 

The tests were conducted using a hybrid tomography 
system specifically developed at the Netrix SA laboratory 
(Fig. 1). The system included a tomograph with a test tank 
that employed 32 measurement electrodes arranged in a 
2x16 configuration to perform a 2.5D measurement 
sequence. 

The key element is a measurement system based on 
microcontroller architecture using advanced FPGA systems. 
This system was designed for high flexibility and 
interoperability, enabling precise acquisition, sampling, and 
processing of signals in real time. FPGA microcontrollers 
allowed for dynamic reconfiguration of the system 
depending on the requirements specific to various research 
materials and technological processes. The project focused 
on developing an efficient communication interface that 
enables quick data exchange between the elements of the 
measurement system and the workstation. This interface 
ensures the transmission of measurement data and allows 
remote control of measurement parameters and system 
configuration. The use of the universal UART permitted 
protocol for easy integration of the tomography system with 
PC computers and mobile devices. 

The central point of the methodology is the use of 
innovative image reconstruction algorithms based on 
machine learning. The work used multi-branch neural 
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networks to process tomographic data and generate high-
resolution images of cross-sections of the examined 
objects. These algorithms were trained and verified on 
simulated measurement data, which allowed for the 
optimization of the image reconstruction process and 
increased accuracy and reliability of the results. A data set 
was constructed to emulate real measurements, thereby 
enabling the models to train and perform more effectively in 
authentic real-world scenarios.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Layers of the multi-branch neural networks 

 
 
 
 
 
 
 
 
 
 
Fig.3. Layers of the LSTM networks 
 

The input vector to the neural network was composed of 
448 measurements, while the output was a three-
dimensional image generated on a tetrahedral mesh 
comprising 14,100 finite elements. The training set 
comprised 30,000 observations, while the validation set 
included 3,000 observations, ensuring a robust training 
process. The structure of the multi-branch neural network, 
as illustrated in Figure 2, was purposely devised to address 
the tomographic data's intricacies and enhance the 
reconstructed images' overall quality. The second model, a 
single-branch LSTM network, comprised an input layer with 
448 dimensions, followed by an LSTM layer with 6,144 
hidden units, as illustrated in Fig. 3.  

Fig. 4 clearly illustrates the branching points in the multi-
branch architecture. Subsequent to the initial sequence and 
LSTM layer, the network divides into multiple branches. 
Each branch processes the data independently through 

additional layers, such as batch normalization and dropout. 
After the independent processing of the branches is 
complete, the branches are merged using a technique 
known as concatenation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Branching structure in a multi-branch neural network 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. The training performance of neural networks: a) multi-branch, 
b) LSTM 
 

Concatenation is a technique whereby the outputs from 
different branches are combined by joining them into one 
longer vector. To illustrate, if branch A generates a vector of 
length c and branch B generates a vector of length d, the 
result of the concatenation is a vector of length c+d. This 
method guarantees that all information from both branches 
is preserved without any mathematical mixing, thus 
maintaining the distinct contributions of each branch. 

The concatenated vector is then processed by the 
subsequent layer, which is a bidirectional LSTM layer. This 
layer contains 1280 hidden units, which facilitate 
sophisticated sequential processing. The substantial 
number of hidden units permits the network to more 
effectively capture the hidden dependencies between inputs 
and outputs, thereby enhancing the model's capacity to 
accurately identify patterns and relationships in the 
tomographic data, leading to more precise reconstructions. 

To ensure a good comparison, the training process for 
both the multi-branch neural network and the single-branch 
LSTM network was conducted using identical parameters. 
The training process for each network was conducted for a 
maximum of 500 epochs with a mini-batch size of 128. This 
approach facilitated the efficient processing of data and 
timely updating of weights in the models. The Adam 
optimization algorithm was employed to minimize the loss 
function. The validation data were evaluated at each 100th 
iteration to monitor the model's performance and prevent 
overfitting. A patience threshold of eight validation checks 
was established, indicating that training would conclude 
prematurely in the event that the model demonstrated an 
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inability to enhance its performance after eight consecutive 
validations. 

As illustrated in Fig. 5, the graphs demonstrate the 
training performance of the models. In both plots, the 
smooth decline in loss values and the absence of significant 
fluctuations indicate that the training process is proceeding 
in an optimal manner. This suggests that the model is 
approaching a state of convergence and that there is no 
evidence of overfitting. The consistency between the 
training and validation loss curves provides further proof of 
the robustness of the model, thereby reinforcing confidence 
in its capacity to generalize to new data. 
 
Results 

The presented research results demonstrate the 
effectiveness of the developed tomographic system in 
monitoring and analyzing production processes. The use of 
advanced image reconstruction algorithms allowed for the 
detection of subtle changes in the material and improved 
the quality and accuracy of tomographic images. 

Table 1 presents a comparison of the reconstruction 
results generated by two different models: the multi-branch 
neural network model and the LSTM model. Each row 
corresponds to a different test case, designated by the 
numbers 1 to 4. The comparison is based on the degree of 
similarity between the reconstructed image and the 
reference pattern. Each figure in Table 1 is presented from 
a 3D isometric view and a top view. This dual 
representation offers a more comprehensive visualization of 
the reconstructed images, enabling a clearer comparison 
between the reference pattern and the reconstructions 
produced by the multi-branch neural network and LSTM 
models. 

Since visualizations alone are insufficient for a thorough 
assessment, quantitative metrics were employed to 
enhance the objectivity of the evaluations. These metrics 
include Mean Squared Error (MSE), Peak Signal-to-Noise 
Ratio (PSNR), Structural Similarity Index (SSIM), and 
Image Correlation Coefficient (ICC) [10]. 

Each of these indicators provides distinct insights into 
the quality of the reconstructions. The MSE is calculated as: 

(1)  

𝑀𝑆𝐸 =   
 𝑦 𝑖 − 𝑦𝑖 

2

𝑅

𝑅

𝑖=1

 

 

Where: 𝑦𝑖   - the pattern voxel value (the intensity of the i-th 

voxel), 𝑦 𝑖  - the corresponding reconstructed voxel value 
(the intensity of the i-th voxel), R - the total number of 
voxels in the 3D image. MSE measures the average 
squared difference between the reference and 
reconstructed values, with lower values indicating better 
accuracy of the reconstruction. 

The PSNR is used to assess the ratio of the maximum 
possible signal power to the power of corrupting noise, 
computed as: 

(2)  𝑃𝑆𝑁𝑅 = 10 ∙ 𝑙𝑜𝑔10 𝑅
2/𝑀𝑆𝐸   

The SSIM (Structural Similarity Index) is formulated to 
assess image quality based on the human visual perception 
of structural information. It compares the reference and 
reconstructed images' luminance, contrast, and structure. 
SSIM values closer to 1 reflect better structural similarity. 

(3)  

𝑆𝑆𝐼𝑀 =
 2𝜇𝑦 𝜇𝑦 + 𝐶1  2𝜎𝑦 𝑦 + 𝐶2 

 𝜇𝑦 
2 + 𝜇𝑦

2 + 𝐶1  𝜎𝑦 
2 + 𝜎𝑦

2 + 𝐶2 
 

 

where: 
𝜇𝑦 , 𝜇𝑦  

 - the local means, 
𝜎𝑦 , 𝜎𝑦  

 - the standard 

deviations,  
𝜎𝑦 𝑦  

 - the cross-covariance for the images, C1 

= (0.01*L)2, C2 = (0.03*L)2, L is set to 1 for normalized voxel 
values in the range (0,1).  
 
Table 1. Comparison of the reconstructions generated by multi-
branch neural networks  and LSTM model 

ID multi-branch 
neural networks 

LSTM Pattern 

#1 
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Finally, the ICC (Image Correlation Coefficient) 
quantifies the correlation between the reference and 
reconstructed images. It is calculated as: 

(4)  

𝐼𝐶𝐶 =
  𝑦𝑖 − 𝑦   𝑦 𝑖 − 𝑦   𝑅

𝑖=1

   𝑦𝑖 − 𝑦  2𝑅
𝑖=1   𝑦 𝑖 − 𝑦   

2𝑅
𝑖=1

 

 

where:   - the average intensity values of the pattern,   - 
the average intensity values of the reconstructed images 

The results of these metrics are presented in Table 2, 
which compares the performance of the multi-branch neural 
networks and LSTM models across four test cases. The 
results demonstrate that the multi-branch neural networks 
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consistently achieve lower MSE values, indicating more 
accurate reconstructions. To illustrate, in test case #4, the 
MSE for the multi-branch neural networks is 0.089, which is 
markedly lower than the 0.155 for the LSTM model. This 
indicates that the multi-branch approach yields 
reconstructions of greater precision. 

 
Table 2. Comparison of reconstruction quality metrics 

Indicator model ID 

#1 #2 #3 #4 

MSE multi-branch neural 
networks 

0.192 0.224 0.446 0.089 

LSTM 0.202 0.324 0.688 0.155 

PSNR multi-branch neural 
networks 

7.171 6.492 3.508 10.466 

LSTM 6.951 4.894 1.625 8.092 

SSIM multi-branch neural 
networks 

0.402 0.274 0.419 0.264 

LSTM 0.400 0.268 0.437 0.249 

ICC multi-branch neural 
networks 

0.899 0.821 0.819 0.879 

LSTM 0.885 0.730 0.787 0.792 

 
The PSNR values confirm this observation, with higher 

values evident for the multi-branch neural networks across 
most test cases, particularly in test case #4, where the 
PSNR reaches 10.466, in contrast to 8.092 for the LSTM 
model. This suggests that the multi-branch model is more 
effective in reducing noise in the reconstructions. With 
regard to SSIM, the two models exhibit comparable 
performance, although the multi-branch neural networks 
demonstrate slight superiority in terms of structural 
similarity, particularly in test case #3, with an SSIM value of 
0.419 compared to 0.437 for the LSTM model. Finally, the 
ICC values demonstrate that the multi-branch neural 
networks achieve higher correlations with the reference 
images across all test cases. In test case #4, for instance, 
the multi-branch neural networks achieve an ICC of 0.879, 
whereas the LSTM model records an ICC of 0.792. This 
highlights the enhanced precision of the multi-branch 
approach in reconstructing images that closely resemble 
the reference patterns.  

The quantitative analysis presented in Table 2 clearly 
demonstrates that the multi-branch neural networks 
outperform the LSTM model in terms of reconstruction 
accuracy, noise reduction, structural similarity, and 
correlation with the reference image, particularly in more 
complex cases. 
 
Conclusions 

The conducted research provides a comprehensive 
examination of advanced EIT techniques with the objective 
of optimizing and controlling technological processes. The 
primary innovation is the integration of state-of-the-art 
hardware with advanced signal processing methods and 
machine learning algorithms, particularly the use of multi-
branch neural networks for image reconstruction. The 
comparative analysis between the multi-branch neural 
networks and the LSTM model demonstrates that the multi-
branch approach is more effective than the LSTM model in 
tomographic image reconstruction. The multi-branch neural 
networks demonstrate consistent superiority across all 
analyzed quality indicators, confirming their effectiveness in 

delivering more accurate and reliable reconstructions. 
These findings confirm the potential of the proposed multi-
branch model to enhance image quality and accuracy, 
rendering it highly suitable for real-world applications in 
diagnostics, process monitoring, and quality control. 
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