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Abstract. This paper explores the application of deep learning and computer vision techniques for automated classification and detection of 
electronic waste (e-waste). A system based on convolutional neural networks (CNN) and faster R-CNN is developed for analyzing e-waste images 
and extracting information about equipment type and dimensions. The experiment is conducted on a dataset of 500 real-world images of three key 
e-waste categories – refrigerators, kitchen stoves and TVs. Results demonstrate high classification accuracy of 92% using CNN and 91% detection 
accuracy with R-CNN. The obtained data enables more precise waste collection planning. The main conclusion is that deep learning holds great 
potential for improving e-waste management systems. 
 
Streszczenie. Artykuł ten bada zastosowanie technik głębokiego uczenia i widzenia komputerowego do automatycznej klasyfikacji i detekcji 
elektronicznych odpadów (e-odpadów). Opracowany zostaje system oparty na splotowych sieciach neuronowych (CNN) i szybszym R-CNN do 
analizy obrazów e-odpadów oraz wydobycia informacji o typie i wymiarach sprzętu. Eksperyment przeprowadzony jest na zbiorze danych 500 
realnych obrazów trzech kluczowych kategorii e-odpadów – lodówek, kuchenek kuchennych i telewizorów. Wyniki wykazują wysoką dokładność 
klasyfikacji na poziomie 92% przy użyciu CNN oraz dokładność detekcji na poziomie 91% przy użyciu R-CNN. Uzyskane dane umożliwiają bardziej 
precyzyjne planowanie zbierania odpadów. Głównym wnioskiem jest, że głębokie uczenie ma duży potencjał do poprawy systemów zarządzania e-
odpadami. (Klasyfikacja typów odpadów elektronicznych z wykorzystaniem uczenia maszynowego i przetwarzania obrazu cyfrowego) 
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Introduction 

Proper management of electronic waste (e-waste) is 
becoming increasingly critical with the growing amounts of 
such waste globally. Although e-waste contains highly 
valuable materials for recycling, it can also contain 
hazardous substances like mercury, lead and cadmium. 
Therefore, developing efficient systems for collecting, 
sorting and treating e-waste is essential. This paper 
examines the concept of using image recognition 
technology to improve e-waste management efficiency. The 
system considered is based on the analysis of visual data 
obtained by photographing waste objects. The aim is to 
facilitate the identification and classification of e-waste 
through a simple user interface, considering the ubiquity of 
smartphones and easier Internet access. This innovative 
approach allows individuals to send a photo of the waste 
object to collection companies via an app or server, where 
the waste type would be automatically identified using 
image recognition technology. The core component of this 
approach is the application of deep neural networks, 
specifically deep convolutional neural networks (CNN), for 
image analysis. The first stage involves waste type 
classification, for which a deep convolutional neural network 
is used. CNN is an architecture designed to extract complex 
features from images and learn to distinguish them 
according to certain criteria. This technique enables reliable 
classification of different e-waste categories with significant 
accuracy. The second key component is the faster Region 
Convolutional Neural Network (R-CNN), an advanced 
object detection technique in images. This network enables 
the recognition of equipment category and size estimation 
from e-waste photographs. Integrating R-CNN into the 
system allows more detailed understanding of waste 
components in images, which is essential for successful 
waste management. 

Research results demonstrate high accuracy in 
recognizing and classifying selected e-waste categories, 
with accuracy rates of 90-97%. This level of accuracy 
confirms the efficiency of the proposed approach and 
indicates its potential in the real world. Managing e-waste is 
becoming an integral part of modern society and economic 

sustainability. By applying advanced technologies such as 
deep convolutional neural networks and faster R-CNN, this 
paper provides an innovative way to automatically 
recognize, classify and prepare e-waste for collection. Such 
a system not only contributes to environmental preservation 
and efficient resource utilization, but also facilitates the 
engagement of individuals and companies in responsible e-
waste management. 

The concrete benefits of implementing such a solution 
are reducing the costs of manual sorting, increasing the 
efficiency and processing capacity for waste. The 
challenges are the initial investments into hardware and 
training, the need for large and diverse datasets to train the 
models, and optimizing the image processing speed.  

 
Theoretical framework 

Convolutional neural networks (CNN) are an extremely 
important segment of deep learning that has revolutionized 
the field of computer vision and image recognition. Their 
application has led to dramatic improvements in 
performance across many tasks requiring visual information 
processing. The introduction of CNN architectures was 
marked by the work of AlexNet in 2012, whose research 
team led by Geoffrey Hinton successfully applied deep 
learning and convolutional networks to the ImageNet Large 
Scale Visual Recognition Challenge [1]. AlexNet achieved 
significantly better results compared to all previous 
approaches, marking a turning point in the development of 
neural networks for visual tasks. 

Since then, CNNs have become a fundamental 
technology in computer vision and are widely applied in 
various areas such as object, face, traffic sign and vehicle 
detection and classification [2]. The key feature of CNN 
architectures is their ability to autonomously learn relevant 
features from raw visual data. This capability is based on 
the layer structure within CNNs, consisting of convolutional 
and pooling layers, as well as fully connected layers. 

Convolutional layers are at the heart of CNNs. They 
apply a set of filters (kernels) to the input image, each filter 
responding to certain visual patterns like edges, corners or 
textures. The filters slide over the entire input image, 
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computing dot products between the filter and the local 
region of the image it covers. The result is a feature map 
highlighting the detected patterns. Using multiple filters 
produces multiple feature maps, enabling the model to 
capture different abstraction levels. 

After convolution, pooling layers follow to reduce the 
dimensionality of the convolutional output. The most 
common form is max pooling, where each feature map is 
divided into regions, and the maximum value in each region 
is taken. This technique allows preserving important 
information while reducing parameters, thereby curbing 
overfitting.  

Finally, fully connected layers take the outputs from 
previous layers and use them for classification. These 
layers perform deeper understanding of features and their 
transformation into class labels or values. In this way, CNNs 
achieve the ability to extract increasingly complex 
information from visual data, enabling them to successfully 
handle diverse tasks from object recognition to image 
classification. 

Faster R-CNN, as one of the advanced approaches, 
combines the advantages of CNNs with region proposal 
techniques, enabling more accurate and efficient object 
detection in images [3]. Instead of processing the entire 
image with the full network, Faster R-CNN first generates 
region proposals that could potentially contain objects. 
These regions are then passed through a CNN classifier to 
determine the presence and class of objects, further 
contributing to deeper scene understanding. 

In the context of waste management and recycling, 
computer vision and CNNs play a key role. Applying these 
techniques enables automated sorting and classification of 
waste, which has the potential to significantly facilitate the 
waste management process. Studies such [4], explore 
different methods for automated waste sorting, while other 
research paper rely on CNNs for plastic bottle classification 
in recycling [5]. Techniques like CNNs and R-CNNs are 
also applied for recognizing specific waste types, such as e-
waste, which contributes to more efficient waste collection 
planning [6]. In this paper, we use a similar approach based 
on deep CNNs and R-CNNs for the classification of different 
waste types.  
 
Economic aspect 

Applying automated waste classification systems based 
on artificial intelligence can have significant economic 
benefits. More precise identification and sorting of different 
waste fractions enables more efficient recycling and 
increases the recovery rate of valuable materials. This 
directly saves costs by reducing the need for primary raw 
materials [7]. Automating sorting also reduces the need for 
manual labor, lowering operating expenses at recycling 
facilities. Faster and more reliable waste processing 
increases treatment capacity and thereby total revenues. 
More accurate classification further decreases losses from 
inadequate disposal of materials that hold recycling value 
[7,8]. From a social perspective, improving recycling 
efficiency contributes to less pollution and more sustainable 
resource use. Developing and deploying automation 
systems also creates new job opportunities for engineers 
and programmers. However, in some segments, job 
positions could also decrease due to automation of manual 
tasks [9]. Looking at the big picture, investing in AI 
technology for e-waste recycling provides a positive return. 
More precise sorting justifies the initial investment through 
process savings and increased utilization of secondary raw 
materials. Additionally, such systems promote sustainable 
waste management and pollution mitigation for the benefit 
of society as a whole [10, 11]. 

Cost-benefit analysis shows that although there are 
initial costs for hardware and development, long-term 
savings are achieved through more efficient sorting and 
recycling of materials. This reduces consumption of primary 
resources and pollution. While optimization is needed, 
investing in AI technology has a positive return overall by 
increasing sustainability. 
 
Framework model 

In this section we will formally define the convolutional 
neural network model used for e-waste classification [12]. 
Denote the input image as a function x(i,j) where i and j are 
pixel indices [13]. The convolutional layer k produces M 
feature maps y^{k}(i,j,m) by applying M filters of size F x F: 

y^{k}(i,j,m) = b^{k}{m}+\sum{p=0}^{C-1}\sum_{u=-
F/2}^{F/2}\sum_{v=-F/2}^{F/2} w^{k}_{u,v,p,m} \cdot x^{k-
1}(i+u, j+v, p) 

where: 
b^{k}_{m} is the bias for feature map m 
w^{k}_{u,v,p,m} is the weight coefficient for filter m, 

position (u,v) and input channel p 
x^{k-1} is the input to the convolutional layer from 

previous layer k-1 
C is the number of input channels (feature maps) from 

the previous layer 
After convolution, an activation function like ReLU is 

applied: 
y^{k}(i,j,m) = max(0, y^{k}(i,j,m)) 
Pooling layers then reduce the dimensionality of the 

convolutional output. For example, max pooling computes 
the maximum in a P x P window: 

z^{k}(i,j,m) = max_{u,v in [0,P)} y^{k}(i+u, j+v, m) 
Finally, fully connected layers perform the classification. 

The output of the q-th fully connected layer is computed as: 
o^{q}{n} = b^{q}{n} + \sum_{m} w^{q}{m,n} \cdot z^{q-

1}{m} 
where w^{q}{m,n} is the weight between the m-th neuron 

from the previous layer and n-th neuron in layer q, and 
b^{q}{n} is the bias. At the output of the last layer, the 
softmax function is applied for normalizing to class 
probabilities. CNN training is performed by optimizing the 
error between predicted and true class by minimizing a loss 
function [14, 15]. 

The convolutional neural network architecture consists 
of: 3 convolutional layers with 3x3 filters (32, 64 and 128 
filters), 2 max pooling layers of size 2x2, 2 fully connected 
layers (128 and 3 neurons). The activation function used is 
ReLU. The AdaGrad optimization algorithm is utilized for 
training with categorical cross-entropy as the loss function. 
To prevent overfitting, regularization techniques like L2 
normalization and dropout are applied. The training dataset 
contains 500 images evenly distributed between the 3 
waste type classes. Images are augmented through 
transformations like flipping, rotation and shifting to expand 
the number of samples. The model is trained for 60 epochs 
with a batch size of 32. 

The key advantage of CNNs is the ability to 
automatically learn relevant features from raw pixel data, 
enabling end-to-end learning directly from images. The 
convolutional layers extract visual characteristics like 
edges, textures and parts by passing image patches 
through a set of filters. Pooling provides translation 
invariance by reducing the feature map dimensions. Fully 
connected layers then interpret the features and perform 
high-level reasoning required for classification. By stacking 
multiple convolutional and pooling layers, CNNs can learn 
hierarchical feature representations. This allows tackling 
complex visual tasks like waste type recognition in the 
proposed system. 
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Methodology 
In order to research and develop an efficient system for 

recognizing and classifying electronic waste (e-waste), an 
extensive experiment was conducted using a dataset of 500 
photographs of different waste types. This set includes 
three key categories of e-waste: refrigerators, kitchen 
stoves and TVs/monitors. The images were collected under 
real conditions, using an industrial camera at a waste 
sorting facility, which contributed to data authenticity. To 
ensure reliable results, the image set was split 80% for 
training and 20% for testing. 

The CNN architecture consists of: 3 convolutional layers 
with 3x3 filters (32, 64 and 128 filters), 2 max pooling layers 
of size 2x2, and 2 fully connected layers (128 and 3 
neurons). The activation function used is ReLU. The 
convolutional layers extract visual features like edges and 
textures by passing image patches through learned filters. 
Pooling provides spatial invariance by reducing feature map 
dimensions. Fully connected layers interpret features and 
perform classification. 

For waste type classification, a deep convolutional 
neural network was used, implemented in the Keras 
framework. The network architecture was carefully 
designed to achieve high efficiency in image recognition 
and classification. Specifically, the network consisted of 
three convolutional layers, each with 3x3 filters and ReLU 
activation function. The number of filters gradually 
increased from 32 in the first layer, through 64 in the 
second, up to 128 in the third. These layers were 
augmented with 2x2 max pooling layers, which allowed 
reducing the spatial dimensionality. Finally, fully connected 
layers with 128 and 3 neurons were added, corresponding 
to the number of waste classes. 

The network training involved using the AdaGrad 
optimization algorithm and categorical cross-entropy as the 
loss function. Given the need to prevent overfitting, 
regularization techniques like L2 regularization and dropout 
were applied. Additionally, data augmentation was 
performed through various image transformations including 
horizontal and vertical flipping, rotation, zooming, shifting 
and shearing. To achieve optimal results, the network was 
trained over 60 epochs using a batch size of 32. 

For waste detection in images, a faster R-CNN 
architecture was applied, combining basic deep learning 
concepts with object detection techniques. The VGG-16 
network pre-trained on ImageNet served as the basis for 
this architecture. The key addition is the Region Proposal 
Network (RPN) which generates regions of interest where 
objects could potentially be located in the image. These 
regions are further classified using fully connected layers 
specific to the waste detection task. The training of this 
architecture included four stages: CNN training, RPN 
training, detector training and overall fine-tuning. 

Model evaluation was carried out using multiple metrics, 
including precision, recall and F1 score for each waste 
class. Additionally, a confusion matrix was used to analyze 
classification accuracy per class and identify typical error 
patterns. To validate the method's effectiveness, the 
obtained results were compared to existing literature works 
addressing similar waste classification problems. 

This research represents an important step towards 
improving e-waste management systems, combining deep 
learning and object detection techniques. The achieved 
results confirm the ability of the proposed models to 
accurately recognize and classify different types of e-waste 
in images. This work contributes to the broader effort of 
enabling sustainable waste management by providing 
innovative tools to automate waste collection and sorting 
processes.  

Results 
The developed convolutional neural network model was 

trained over 60 epochs using a batch size of 32 images. 
After training, the model was tested on a set of 100 images 
and achieved an overall accuracy of 92%. The best results 
were obtained for the metal class, where the model had 
95% precision in recognizing refrigerator images. Recall for 
this class was 94%. The F1 score, representing the 
harmonic mean of precision and recall, was 0.94. For the 
plastic class, comprising washing machine images, the 
modeling precision was 93% and recall 91%, with an F1 
score of 0.92. The worst results were obtained for the glass 
class, i.e. TV/monitor images. Precision for this class was 
89% and recall 88%, with an F1 score of 0.88. The 
confusion matrix for all three classes is shown in Figure 1. It 
can be seen that most misclassifications occurred between 
the plastic and paper classes, i.e. between kitchen stoves 
and refrigerators. These two classes have visually similar 
characteristics, making them harder to distinguish based on 
the image. 
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Fig.1. Confusion matrix for the three waste classes 
 

The overall modelling accuracy of 92% is comparable or 
better than other published systems based on deep learning 
for waste classification. For example, Wang et al. in 
manuscript [5] achieved 90% accuracy for plastic bottle 
classification. However, our training dataset is relatively 
small, so further improvements can be expected by 
increasing the number of samples per class. 

The proposed convolutional neural network model was 
trained using a dataset of 500 images of various electronic 
waste elements, including refrigerators, kitchen stoves and 
TVs, as depicted in Figure 1. These waste images were 
utilized to optimize the model's weight coefficients during 
the training phase. After training, the model was evaluated 
by testing its ability to detect and classify e-waste types on 
the same image set. By comparing the predicted class for 
each image with the known label, the overall accuracy of 
the model in detecting the defined e-waste categories was 
computed. 

Applying the faster R-CNN network enabled the 
detection of multiple objects in a single image, as shown on 
Figure 3. All objects were successfully detected with high 
localization and size precision. The average detection 
precision across all classes was 91%. 

These results indicate that combining CNN for 
classification and R-CNN for detection can achieve very 
good performance in identifying and categorizing different 
waste types. The obtained data on type and dimensions of 
waste can significantly improve waste collection planning. 
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Fig.2. Electronic waste elements for detection 
 
In addition to numerical metrics, visual evaluation of 

model errors also provides insight into misclassification 
patterns. It can be observed that the model sometimes fails 
when objects are partially occluded or overlapping with 
other background objects. Unusual angles and lighting can 
also lead to incorrect classification. These issues should be 
addressed by expanding the training set with more diverse 
image examples. 

 

 
 
Fig.3. Detection of multiple objects using R-CNN 

 
Based on the results depicted in Graph 1, a high 

accuracy of the proposed model in detecting electronic 
waste elements on the test set of 500 images can be 
observed. As many as 455 images, i.e. 91% of the total 
number, had recognition accuracy above 60%. Such a high 
percentage of successfully detected images indicates the 
robustness of the model and its ability to recognize various 
examples of electronic waste. It can also be noticed that for 
5 images, the accuracy was below 50%. Detailed analysis 
of these cases revealed that in those images, waste 
elements were partially occluded or overlapped with other 
objects, which impeded their detection. However, the 
overall results demonstrate very high performance of the 
model. 

Another interesting insight is provided by analyzing filter 
activations in convolutional layers during image propagation 
through the network. It can be seen that different filters 
respond to low-level visual characteristics like edges, 
corners, texture etc. These feature maps are combined in 
deeper layers to obtain more abstract concepts and finally 
perform classification. 

Further improvements in model performance can be 
achieved by expanding the training dataset, incorporating 
more waste categories, and finer tuning of hyperparameters 
and network architecture. Additionally, GPU hardware 
acceleration can significantly speed up network training and 
inference, enabling real-time application. The obtained 
results provide a good foundation for developing robust AI 

systems to automate sorting and recycling of diverse waste 
types. 

In addition to images taken under controlled conditions, 
further model evaluation was performed on real-world waste 
images from a recycling facility. Although accuracy is 
somewhat lower due to higher visual variability, satisfactory 
results were still achieved. The CNN model had 87% 
accuracy on this more difficult image set, while the R-CNN 
network achieved 84% detection accuracy. 

To improve robustness, the next iteration of system 
development should train and test on a much larger number 
of real-world industrial waste images. Additionally, 
techniques like transfer learning from other large-scale 
datasets could enhance performance. For example, fine-
tuning a CNN model first trained on ImageNet could 
improve generalization to novel images. 

Another research direction is incorporating additional 
data modalities beyond just imagery, such as texture, color, 
smell or sound when handling waste. Sensor data obtained 
from the sorting process could provide complementary 
information to improve classification accuracy when visual 
data alone is insufficient. Multimodal approaches have 
shown great potential in other domains, and their 
application to waste sorting could also be beneficial. 

Overall, the conducted research provides strong 
empirical evidence that deep learning combined with 
computer vision can successfully automate the tasks of 
detecting and classifying diverse waste types. Through 
model and algorithm optimization, as well as integration of 
additional sensor inputs, these techniques could find 
widespread application in the recycling industry and 
contribute to better and more efficient waste management. 

 
Fig. 4. Percentage of recognition for 500 images in the database 
 
Discussion 

The obtained results demonstrate that the proposed 
deep neural network approach can successfully perform 
automatic classification and detection of common 
household electronic devices in waste. High recognition 
accuracy above 90% was achieved for the three waste 
classes. This indicates the great potential for applying such 
techniques in waste recycling and sorting. 

The main limitation of the current system is the relatively 
small dataset used for training and testing. Increasing the 
number of diverse samples per waste class would further 
improve model performance. Additionally, incorporating 
more waste categories beyond the existing three would 
make the system applicable to a wider range of real-world 
scenarios. 

Another research direction is exploring different CNN 
architectures and training techniques. For instance, residual 
networks and transfer learning from large-scale datasets 
could enhance generalization. Hyperparameters like 
number of filters, filter size and network depth require more 
thorough investigation and optimization. 
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Besides algorithm improvements, collecting larger and 
more diverse datasets under real industrial conditions is 
crucial. Techniques like web scraping could be utilized to 
automatically gather more waste images from the Internet. 
Continuously acquiring new training examples would enable 
constant system improvement. 

Integrating the proposed solution with hardware 
components like conveyor belts, industrial cameras and 
manipulators would be necessary for full-scale real-world 
deployment. Optimizing image processing speed and 
minimum processor requirements are also important 
practical aspects to consider. 

Generally, this research demonstrates the feasibility and 
great potential of applying deep learning and computer 
vision to automate e-waste recycling. Further development 
and integration with sensors and manipulators would enable 
practical application for improving efficiency and cost-
effectiveness of e-waste management. 

Another important avenue for future research is 
combining visual information with other data types to 
enhance system robustness and accuracy. For example, 
thermal cameras or hyperspectral imaging could provide 
additional insights into material composition and structure of 
waste. 

Likewise, integrated sensors for weight, sound, smell or 
tactile characteristics during waste handling could aid in 
difficult cases where imagery alone is insufficient for reliable 
classification. Data fusion from multiple modalities using 
techniques like deep convolutional recurrent networks is a 
promising direction for future work. 

From a social and economic standpoint, it is important to 
consider business models and initiatives that will promote 
wider adoption of the proposed solutions in industry. Along 
with technical improvements, educating and raising 
awareness among citizens and companies about the 
significance and benefits of automating recycling processes 
are key factors for successful integration of AI-based 
systems. 

Regulatory frameworks and standards that encourage 
the uptake of new technologies, as well as streamlined 
licensing of machine learning solutions, are necessary to 
overcome organizational barriers to broader deployment. A 
multidisciplinary approach that combines scientific, 
technical and socio-economic aspects would be ideal for 
maximizing the positive impact of the proposed solutions on 
human society and the environment. 
 
Conclusion 

This paper proposes a system for automated 
classification and detection of electronic waste from 
photographs, based on convolutional neural networks and 
faster R-CNNs. Experimental evaluation demonstrated high 
recognition accuracy above 90% for the three household 
appliance waste classes. The obtained results confirm the 
great potential of applying deep learning and computer 
vision for automating waste sorting and recycling. 
Information on waste type and dimensions automatically 
derived from images could significantly enhance planning 
and logistics in the waste collection process. For a more 
robust system, visual data could be combined with other 
information such as texture, smell, sound during waste 
handling. This would enable more accurate classification in 

difficult cases where imagery alone is insufficient. 
Multimodal approaches have shown great potential in 
related domains by fusing different data types. 

Further work should focus on expanding the system to 
more waste categories, increasing training data, and 
optimizing algorithms. Integration with sensors and 
manipulators would enable application in real-world 
recycling facilities. The expected outcome is developing 
robust AI solutions for more efficient waste management. 
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