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Economic Load Dispatch Problem Solution Based on Linear 
Variational Inequalities-dynamic Neural Network 

 
 

Abstract. This paper introduces a solution of the economic load dispatch (ELD) problem using linear variational inequalities (LVI) dynamic neural 
network (LVI-DNN). This technique guarantees the global optimality of the solution and fast convergence, so that it can be employed in large on-line 
power systems where variations in load are quite frequent. The new algorithm is applied and tested to an example from the literature and the 
solution is then compared with that obtained by some other techniques to prove the superiority and effectiveness of the proposed algorithm. 
  
Streszczenie. W artykule przedstawiono rozwiązanie problemu ekonomicznego rozłożenia obciążenia (ELD) z wykorzystaniem dynamicznej sieci 
neuronowej LVI-DNN z wykorzystaniem liniowych nierówności wariacyjnych (LVI). Technika ta gwarantuje globalną optymalność rozwiązania i 
szybką konwergencję, dzięki czemu może być stosowana w dużych systemach elektroenergetycznych on-line, gdzie wahania obciążenia są dość 
częste. Nowy algorytm jest stosowany i testowany na przykładzie z literatury, a następnie rozwiązanie jest porównywane z rozwiązaniem uzyskanym 
innymi technikami, aby wykazać wyższość i skuteczność proponowanego algorytmu. (Rozwiązanie problemu dyspozytorskiego obciążenia 
ekonomicznego w oparciu o liniowe nierówności wariacyjne – dynamiczna sieć neuronowa) 
 
Keywords: economic load dispatch (ELD), linear Variational inequalities (LVI), dynamic neural network (DNN), power generation, cost 
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Introduction 
 Economic load dispatch (ELD) is considered as one of 
the most important steps to obtain a complete generation 
scheduling solution. ELD aims to schedule the online 
generators outputs with the predicted load demands over a 
certain period of time in order to operate an electric power 
system most economically within its security limits [1, 2]. By 
solving the ELD problem, the total generation required is 
allocated among the available online thermal generating 
units over a certain period of time. To solve the ELD 
problem, it is assumed that a thermal unit commitment has 
been previously determined. Traditionally, to solve the ELD 
problem, a Lagrangian augmented function is first 
formulated, and the optimal conditions are obtained by 
partial derivation of this function [1-3]. In traditional 
methods, calculation of the penalty factor as well as the 
incremental loss is always the key point in the solution 
algorithm. The problem can be solved using the lambda-
iteration method, Newton-Raphson method and gradient 
method algorithms [1]. However, most of the previous work 
in this field is not able to provide an optimal solution and 
usually get stuck at a local minimum point. 
 Several artificial intelligence-based methods, such as 
simulated annealing, genetic algorithms, evolutionary 
programming and particle swarm optimization have been 
used to solve the ELD problem [4-5]. Such techniques use 
probabilistic rules to update their candidates' positions in 
the search space. Anyway, these algorithms do not always 
guarantee discovering the global optimal solution in a finite 
time but they can only find a feasible solution in short time. 
Various artificial neural networks based methods have been 
proposed for the ELD problem [6-12]. Neural networks 
based on supervised learning algorithms, such as MLP and 
RBF networks, need to be trained by data obtained from a 
conventional ELD solution. Furthermore, application of 
back-propagation type algorithms converges very slowly 
and suffer from local minima problem. 
 In the last years, various dynamic neural network 
models (DNN) have been developed for solving quadratic 
programming problems. According to their design method, 
these DNNs can be categorized as penalty-based DNN 
[13], two-layer Lagrangian DNN [14],  primal-dual DNN [15], 

and one-layer dual DNN [16]. The projection DNN was 
proposed for solving general convex programming 
problems [17-18], which is globally convergent to exact 
optimal solutions of convex quadratic programming 
problems [17-18]. The essence of DNN optimization lies in 
its dynamic nature for optimization and the availability of 
electronic implementation. Unlike other parallel algorithms, 
DNNs can be implemented physically by dedicated 
hardware such as application-specific integrated circuits 
where the optimization procedure execution is truly parallel 
and distributed.  
 In this paper, the LVI-based dynamic neural network 
is investigated for the solution of the ELD problem. This 
method guaranties a fast convergence to the exact optimal 
ELD solution. The problem mapping is very transparent and 
direct, as compared to Hopfield NN. The dynamic neural 
network ELD solver is more suitable for hardware 
implementation where the solution procedures are parallel 
and distributed and ELD optimization problems can be 
solved in real time. An example from the literature is solved 
by the proposed method and the solution is compared with 
some other methods to prove the validity and superiority of 
the proposed technique. 
 
ELD Problem  
      The ELD problem is to find the optimal combination of 
power generation that minimizes the total fuel cost while 
satisfying the total demand and power system constraints. 
The total fuel cost function of ELD problem is defined as 
follows:  

(1) ( )
=
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where FC  ($/h is the total fuel cost), iP  (MW) is the power 

generation of unit i , , ,i i ia b c  are the fuel cost coefficients 

for unit i , n  is the number of generating units. 
The economic dispatch problem is optimized subject to: 
1. Power balance constraint: The total power generated 
must supply total load demand and transmission losses, 
i.e.,. 
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where DP  (MW) is the total load demand and LP  (MW) is 

the total transmission losses computed using the B-
coefficients formula: 

(3) 0
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where é ù= ê úë û1 2 ...
T

nP P P P  and 0
n nB ´Î Â  is 

coefficients matrix. 
2. Unit capacity constraint: The power iP , generated by 

the i th unit, constrained between minimum and maximum 
limits of generation, i.e., 
(4) min maxi i iP P P   
 

     The ELD minimization problem can be formulated as a 
time-varying quadratic program (QP) subject to linear 
equality and bound constraints as follows: 
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Since the objective function (5) is strictly convex (due to 
> 0A  i.e., definite positive matrix) and the feasible region 

of linear constraints (6)-(7) is a closed convex set, if not 
empty, it follows from [17-18] that the constrained minimizer 

P  to the quadratic program (5)-(7) is unique and satisfies 
the Karush-Kuhn-Tucker (KKT) optimality conditions. 
 

LVI-DNN based ELD solution  
    In this section, a primal-dual dynamical QP solver is 
presented based on linear variational inequalities [17-18]. 
By the duality theory [19], for the primal problem (5)-(7), its 
dual problem can be derived with the aid of dual decision 
variables. The dual decision variable is often defined as the 
Lagrangian multiplier for each constraint like (6) and (7). 
However, to reduce the QP-solver complexity, we only need 
to define the corresponding dual decision variable y  for 
equality constraint (6). Thus, the primal-dual decision vector 
z  and its bounds are defined as 
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where in hardware implementation/simulation, maxy  is 

sufficiently large constant to represent +¥ . The convex 
set  W  made by z  is then: 

(9) { }+W = Î £ £1
min max|nz R z z z  

By defining coefficient matrix M  and vector q  as: 
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we have the following equivalence result. 
Theorem. Quadratic program (5)-(7) is equivalent to the 

following LVI problem, i.e., to find a vector z  , such 
that: 

(11) * *- - ³ " Î W( ) ( ) 0,Tz z Mz q z  

The proof can be found in [17-18]. 
It is known that LVI (11) is equivalent to the following 
system of piecewise-linear equations:  

( )F - + - =( ) 0z Mz q z    (12) 

were F(.)  is the W -projection operator defined as 
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Finally, from neural network design techniques [15-18], it 
follows that the LVI-based primal-dual neural network, being 
the QP solver for (5)-(7), can use the following dynamic 
equation: 

(13) ( ) ( )-
+
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where { }a a a +L = 1 2 1, , .., ndiag  and 0i   are capacitive 

parameters used to scale the network convergence.  
Furthermore, (14) can be rewritten in a more compact form 
as: 

(15) ( )= - + F -
.
z Wz W Vz q  

where ( )+ += L + = -1 1,T
n nW I M V I M . 

 

The convergence proprieties of the LVI-DNN (15) stated by 
the following theorem. 
Theorem 2 (LVI-DNN convergence): With the existence of 
at least one optimal solution to the QP (5)-(7), starting from 
any initial state (0)z , the state vector ( )z t  of the LVI-DNN 

(15) is convergent to an equilibrium point *z , of which the 
first n  elements constitute the optimal solution *P  to the 
ELD problem (5)-(7). Moreover, if there exists a constant 

g > 0  such that   22

2 2
Vz q z z z      , then the 

exponential convergence can be achieved with a 

convergence rate proportional to  min i  . 

Proof. Can be generalized from [17-18] and the references 
therein by using Lyapunov function candidate 

*= - 2

2
L z z  and projection-related inequalities. 

Expressed in the i  th-neuron form, LVI-DNN (15) can be 
further written as  
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where ijw  denotes the ij th entry of weighting matrix W , 

and ikv  denotes the ik th entry of weighting matrix V .  

 
Simulation results  
The LVI-DNN performances are tested on two widely used 
power system benchmarks. 
1. 3-unit power system. The cost coefficient data along with 
power generating limits for the 3-unit power system are 
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listed in Table 1. The transmission losses are computed 
using { }0 0.00003, 0.00009, 0.00012B diag= .  
 

Table 1. 3-unit power system parameters. 
 

N° ia  
ib  ic  

m inP (MW) m a xP (MW) 

1 0.00156 7.92 561 150 600 

2 0.00194 7.85 310 100 400 

3 0.00482 7.97 78 50 200 
 

 

The block diagram realization of LVI-DNN (15) using 
Matlab\Simulink is given in Fig. 1, where saturation 
functions, gain matrices and integrators are used to 
implement, respectively, action functions, weighting 
coefficients and differential equations integration. 
The three generators are initialized to their mean power 
values, (0) 1y = , 0.1, 1,2, 3i ia = =  and 4 0.04a = . 

 

 
Fig. 1. Simulink block diagram of 3-unit ELD LVI-DNN solver. 
 

The LVI-DNN is compared to conventional optimization 
method (CM) and to Hopfield neural networks based 
techniques, such as, Standard Hopfield Neural Network 
(SHN) and three improved Hopfield neural network 
approaches (AHN, IHN and PHB (see [7]). The comparison 
is made for 340 (MW) and 850 (MW) power demands. The 
LVI-DNN dynamics, for 340 (MW) and 850 (MW) power 
demands, are shown on fig. 1 and fig. 2, respectively. 
These figures illustrate the convergence of the 3 generators 
powers toward their optimal values, the evolution of total 
generated power to satisfy equality constraint (2) and cost 
evolution. It clear that LVI-DNN converges to the optimal 
solution more rapidly for 850 (MW) power demand. This fact 
is predicable, since in the 850 (MW) power demand case 
the optimal ELD solution is closer to initial powers values. 

Tables 2 and 3 summarize the LVI-DNN results along 
with the results of previously cited methods taken from [7]. 
Compared to the best results, For 340 (MW) load demand, 
LVI-DNN achieves a loss reduction by 0.1355 (MW), a cost 
reduction by 0.9 ($/h) or equivalently 7884 ($/year), and a -
0.0085 (MW) power generation error compared to 0.012 
(MW) for the previous best result. For 850 (MW) load 
demand, LVI-DNN achieves a loss reduction by 0.26 (MW), 
a cost reduction by 2.7 ($/h), or equivalently 23652 ($/year), 
and a null power generation error. 
 
Table 2. 3-unit ELD comparative results for 340 (MW) load 
demand. 

 Generated powers (MW)
Methods LP (MW) 

1P  
2P  

3P  
Cost
($/h)

CM 2.762 152.18 140.57 50.00 3742.9

SHN 2.754 170.35 104.18 68.211 3748.5

AHN 2.762 159.64 133.02 50.092 3743.1

IHN 2.762 152.52 139.85 50.381 3742.9

PHN 2.77 152.23 140.54 50.00 3743.0

LVI-DNN 2.6185 162.31 130.30 50.00 3742.0
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Fig. 2. LVI-DNN evolution for 3-unit ELD, 340 (MW). 
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Fig. 3. LVI-DNN evolution for 3-unit ELD, 850 (MW). 
 
Table 3. 3-unit ELD comparative results for 850 (MW) load 
demand. 

 Generated powers 
Methods LP  

(MW) 
1P  

2P  
3P  

Cost 
($/h) 

CM 17.14 401.22 341.08 124.84 8351.4

SHN 17.12 373.73 310.27 183.12 8370.6

AHN 17.14 383.79 331.98 151.362 8355.4

IHN 17.14 401.67 340.66 124.81 8351.4

PHN 17.14 401.66 340.66 124.82 8351.4

LVI- 16.86 408.16 332.49 126.21 8348.7

 
 2. 13-unit power system. The cost coefficient data along 
with power generating limits for the 3-unit power system are 
listed in table 4. The transmission losses are computed 
using 0B  coefficients listed in (17). The LVI-DNN dynamics 

evolution for 975 (MW) and 2575 (MW) load demands are 
shown in fig. 4 and fig. 5, respectively. 
Table 5 shows the LVI-DNN results along with the results of 
conventional method (CM) and RBF neural network based 
method (PNM) taken from [8]. For the three load demands, 
LVI-DNN provides loss reductions of 4.5983, 15.18 and 
34.421 (MW), respectively. The production cost is reduced 
by 37.9 ($/h) , 145.92 ($/h) and 307.85 ($/h), for the three 
load demands respectively. The power generation errors 
are very low compared to the two other methods results. 
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Table 4. 13-unit power system parameters. 
 

N° ia  
ib  ic  

minP  maxP

1-6 0.00324 7.74 240.0 60.0 180.0

7,8 0.00284 8.60 126.0 40.0 120.0

9,10 0.00284 8.60 126.0 55.0 120.0

11 0.00028 8.10 550.0 0.0 680.0

12 0.00056 8.10 309.0 0.0 360.0

13 0.00056 8.10 307.0 0.0 360.0
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Fig. 4. LVI-DNN evolution for 13-unit ELD with 975 (MW) load 
demand. 
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Fig. 5. LVI-DNN evolution for 13-unit ELD with 2575 (MW) load 
demand. 
Table 5. 13-unit ELD comparative results. 

 
DP  (MW) Methods å i

i

P  (MW) 
LP  (MW) Cost ($/h)

975 CM 988.40 13.4009 11201.90

 PNM 988.41 13.4011 11201.95

 LVI-DNN 983.8 8.8026 11164.00

1925 CM 1985.2 60.1509 19506.92

 PNM 1985.2 60.1509 19506.92

 LVI-DNN 1970.00 44.9710 19361.00

2575 CM 2685.7 110.6924 25517.99

 PNM 2685.3 110.6711 25514.85

 LVI-DNN 2651.3 76.2500 25207.00

 
 
 

Conclusion  
     This paper presents a new approach for the economic 
operation of power systems. It uses a dynamical neural 
network model to determine the optimal scheduling of the 
power plants. Numerical results show that highly optimal 
solutions can be obtained by the proposed method. The 
LVI-DNN algorithm is very fast and requires small 
computing resources. Further, LVI-DNN scals very well of 
large power systems and has the potential for hardware 
implementation using analog electronics devices. 
 

4
0

0.5 0.1 0.05 0.05 0.1 0.05 0.15 0.05 0.05 0.1 0.05 0.05 0.15

0.1 0.4 0.1 0.05 0.15 0.05 0.05 0 0.1 0.05 0.05 0 0.05

0.05 0.1 0.3 0.05 0.05 0 0.1 0 0.05 0 0.05 0 0.05

0.05 0.05 0.05 0.44 0.15 0.1 0 0 0.05 0 0.05 0 0

0.1 0.15 0.05 0.15 0.4 0.15 0.1 0.05 0

10B -=

0 0.05 0 0

0.05 0.05 0 0.1 0.15 0.4 0.1 0.05 0 0.05 0 0 0

0.15 0.05 0.1 0 0.1 0.1 0.3 0.15 0.1 0 0.05 0 0

0.05 0 0 0 0.05 0.05 0.15 0.4 0.1 0.1 0 0.05 0

0.05 0.1 0.05 0.05 0 0 0.1 0.1 0.3 0.1 0.05 0.05 0

0.1 0.05 0 0 0 0.05 0 0.1 0.1 0.5 0.15 0.1 0.05

0.05 0.05 0.05 0.05 0.05 0 0.05 0 0.05 0.15 0.4 0.15 0.05

0.05 0 0 0 0 0 0 0.05 0.05 0.1 0.15 0.5 0.1

0.15 0.05 0.05 0 0 0 0 0 0 0.05 0.05 0.1 0.7

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úê úë û

 
Authors: Dr Ghania Debbache. LGEA Lab., Electrical Engineering 
Department, Oum El Bouaghi University, Oum El Bouaghi 04000 
Algeria. e-mail: gdebbache@yahoo.fr 
 

REFERENCES 
[1] Zhu J. Optimization of  Power System Operation. IEEE Press 

Series on Power Engineering. Wiley, 2015. 
[2] Chen C., Qu L., Tseng M.-L., Li L., Chen C.-C., Lim M.K. 

Reducing fuel cost and enhancing the resource utilization rate 
in energy economic load dispatch problem. J. Clean. Prod., vol. 
364, 2022.  

[3] 5. Huneault M., Galiana F.D. A survey of the optimal power 
flow literature. IEEE Trans. Power Syst. vol. 6, pp. 762-770, 
1991. 

[4] Lee K., El-Sharkawi M. Modern Heuristic Optimization 
Techniques: Theory and Applications to Power Systems. IEEE 
Press Series on Power Engineering. Wiley, 2008. 

[5] Si Tayeb A., Bouzeboudja H. Application of a New Meta-
heuristic Algorithm using Egyptian Vulture Optimization for 
Economic Load Dispatch. Przeglad Elektrotechniczny 
(Electrical Review), vol. 95, no. 6, pp. 56-65, 2019. 

[6] Lee K.Y., Sode-Yome A., Park J.H. Adaptive Hopfield neural 
networks for economic load dispatch, IEEE Trans. Power Syst. 
vol. 13, no. 2, pp. 519-525, 1998. 

[7] Yalcinoz T., Altun H. Comparison of simulation algorithms for 
the Hopfield neural network: An application of economic 
dispatch, Turk J. Elec. Eng., vol.8, no. 1, pp. 67-80, 2000. 

[8] Aravindhababu P., Nayar K.R. Economic dispatch based on 
optimal lambda using radial basis function network. Elec. 
Power Energy Syst., vol. 24, pp. 551-556, 2002. 

[9] Naresh R., Dubey J., Sharma J.D. Two-phase neural network 
based framework for modelling of constrained economic load 
dispatch. IEE Proceedings Generation, Transmission and 
Distribution, vol. 151, no. 3, pp. 373-380, 2004.  

[10] Benhamida F., Bendaoud A., Medles K., Tilmatine A., Dynamic 
Economic Dispatch Solution with Practical Constraints Using a 
Recurrent neural network. Przeglad Elektrotechniczny 
(Electrical Review), vol. 87, no. 8, pp. 149-153, 2011. 

[11] Kim M-J. Kim T-S., Flores R.J., Brouwer J. Neural-network-
based optimization for economic dispatch of combined heat 
and power systems. Applied Energy, vol. 265, no. 1, 2020. 

[12] Nangia U., Jain N., Rastogi P., Malik R., Jain P. Artificial neural 
network algorithms for the optimum solution of economic load 
dispatch problem. Int. Conf. on Communication, Control and 
Information Sciences (ICCISc), Idukki, India, 2021, pp. 1-6.  

[13] Kennedy M.P., Chua L. O. Neural networks for nonlinear 
programming. IEEE Trans. Circuits Syst., vol. 35, pp. 554-562, 
1988. 



38                                                                                       PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 9/2024 

[14] Zhang S., Constantinides A.G. Lagrange programming neural 
networks. IEEE Trans. Circuits Syst., vol. 39, pp. 441-452, July 
1992. 

[15] Xia Y., Feng G., Wang J. A primal-dual neural network for 
online resolving constrained kinematic redundancy in robot 
motion control. IEEE Trans. Syst., Man, Cybern. B, 35, 1, 54–
64, 2005.  

[16] Zhang Y., Wang J. A dual neural network for convex quadratic 
programming subject to linear equality and inequality 
constraints. Physics Letters A, 298, 271–278, 2002. 

[17] Xia Y. S., Wang J. A generl projection neural network for 
solving monotone variational inequality and related optimization 
problems, IEEE Trans. Neural Networks, vol. 15, pp. 318-328, 
Mar. 2004. 

[18] Wu H., Shi R., Qin L., Tao F., He L. A Nonlinear projection 
neural network for solving Interval quadratic Programming 
problems. .Mathematical Problems in Engineering, vol. 2010, 
pp. 1-13. doi:10.1155/2010/403749 

Bazaraa M.S., Sherali H.D., Shetty C.M. Nonlinear programming- 
Theory and algorithms. New York: Wiley, 1993. 

 


