
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 9/2024 29

Szymon CHERUBIN1, Wojciech KACZMAREK1, Michał SIWEK1
1Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, Kaliskiego 2 Street, Warsaw, 00-908, Poland

doi:10.15199/48.2024.09.04

YOLO object detection and classification using low-cost mobile
robot

Abstract. The article presents a study of object detection and classification methods based on deep learning YOLO (You Only Look Once)
implemented on the on-board computer (Raspberry Pi 4B) of a mobile robot. The research was carried out using a mobile robot working with the
ROS Noetic platform, equipped with LiDAR, Kinect and odometric sensors. During the operation of deep neural networks, the average precision of
mAP detection and the computing power consumption of the central unit without a graphics processor were determined. The HTOP package was
used to observe computational processes and the level of CPU computing power consumption in real time.

Streszczenie. W artykule przedstawiono badanie metod wykrywania i klasyfikacji obiektów opartych na głębokim uczeniu YOLO (You Only Look
Once) zaimplementowanych na komputerze pokładowym (Raspberry Pi 4B) zbudowanego robota mobilnego. Badania przeprowadzono z
wykorzystaniem robota mobilnego współpracującego z platformą ROS Noetic, wyposażonego w czujniki: LiDAR, Kinect i odometryczne. Podczas
działania głębokich sieci neuronowych określono średnią precyzję wykrywania mAP oraz zużycie mocy obliczeniowej jednostki centralnej
pozbawionej procesora graficznego. Do obserwacji procesów obliczeniowych i poziomu zużycia mocy obliczeniowej procesora w czasie
rzeczywistym wykorzystano pakiet HTOP. (Wykrywanie i klasyfikacja obiektów YOLO przy użyciu niedrogiego robota mobilnego)

Keywords: mobile robot, deep neural network, YOLO, object detection and tracking, Raspberry Pi
Słowa kluczowe: robot mobilny, głęboka sieć neuronowa, YOLO, detekcja i klasyfikacja obiektów, Raspberry Pi

Introduction
Advanced object detection and classificat ion algorithms

are increasingly often implemented in mobile robots.
Detection and classification algorithms are one of the sub-
fields of AI (artificial intelligence), which has been
dominating technology environments with remarkable
speed in recent years and is being rapidly developed by the
technology hegemons - Microsoft, Tesla etc. These types of
algorithms play an extremely important role in commercial
environments, as well as in the military. In both cases, they
allow the detection of objects of interest. In the case of
military applications, the lion's share is the use of these
types of algorithms on platforms that carry out
reconnaissance of the environment and enemy activities
without risking human life and health. For the commercial
environment, a great example is the implementation of
these types of algorithms in autonomous vehicles, whereby
the vehicle can pick out objects of interest from the
environment and use them appropriately for its operations.
An example of this is the detection of traffic signs,
pedestrians or other objects that threaten safe movement.
Another particularly important use for public safety is the
implementation of such algorithms in CCTV cameras in
public places. This makes it possible to detect and identify
vehicle drivers breaking traffic regulations (registration
number classification), or to detect offenders (face detection
and classification).

Background
Artificial neural networks provide enormous human

support in all fields [1]. Nevertheless, their implementation
requires large decks of computing power. Nor is it different
for detection and classification algorithms. Given the wide
spectrum of applications for this type of algorithms, it is
often impossible to use computing units equipped with
advanced computing graphics processors. Therefore, we
have conducted studies to examine and determine the
detection accuracy, processing speed and the amount of
computing power required to perform the task by a
computing unit (CPU only) of mobile robot. A important
aspect is the fact that we use the Raspberry Pi 4B single-
plate computer, which can be successfully mounted on
unmanned vehicles of small size, as well as on which
construction is a small budget (fig.1).

Fig.1. Low-cost mobile robot

A mobile robot requires an appropriate hardware
structure to function properly and efficiently in the real
environment. Implemented sensory systems allow the
accumulation of relevant data from the environment [2-4].
The computing units, in turn, are responsible for the
processing and transmitting them to the user’s computing
unit using IEEE 802.11ac remote data transmission. The
hardware structure of the robot is shown below in block
form in Figure 2.

Vehicle hardware platform

PC

DC/DC
Converter

Camera power
supply

RGB Camera Encoders DC motors

Central
processing unit

Microcontroller DC motor driver

Laser scanner
Logic power

supply
Motors power

supply

USBWi‐Fi

Fig.2. Hardware structure of the autonomous vehicle

30 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 9/2024

The mobile robot with the structure presented in Figure
2, cooperates with the ROS Noetic platform, equipped with
LiDAR, Kinect and odometry sensors. ROS is currently the
most popular platform used in mobile robots in the world
[5-7].

YOLO Algorithm
The YOLO algorithm was developed by Joseph Redmon

[8]. Its innovation over other algorithms used for detection
and classification is the use of functions learned by a deep
convolutional neural network and from the fact that
detection is treated as a regression problem [8-10]. This
allows real-time processing of video streams with a delay of
less than 25 ms [8]. This approach makes it possible to
obtain a vector (bounding box) in the output containing the
coordinates of the object's position together with its class
probability. In addition, it has the highest speed and
accuracy. The figure below shows the average detection
precision along with the speed of the YOLOv3 algorithm
compared to other commonly used algorithms.

Operating principle
The YOLO algorithm superimposes n grids of equal

size S x S on the image. Each of these grids is responsible
for detecting and locating the object contained within it. This
is done by predicting the coordinates of the boundary frame
B relative to the coordinates of their cell, as well as the label
of the object and the probability of its presence in the cell.
The prediction process of one image is made by multiple
cells with different probability envelopes, leading to
duplicate predictions. This is offset by the use of a non-
maximal suppression function (NMS) [10].
It works by analysing the probability scores and eliminating
frames with lower probability values. This procedure is
carried out in a loop until the final B-frame is obtained.

Each boundary frame consists of 5 prediction values: x,
y, w, h and confidence. The parameters (x,y) represent the
centre of the frame relative to the grid cell boundaries. The
others (w,h) define its width and height relative to the whole
image. The confidence prediction represents the IoU
between the predicted field and any actual field. Each grid
cell also predicts a conditional class probability
Pሺ𝐶𝑙𝑎𝑠𝑠|𝑂𝑏𝑗𝑒𝑐𝑡ሻ. These probabilities are conditional on
the grid cell containing the object. Only one set of class
probabilities per grid cell is predicted, regardless of the
number of B-frames. During testing, the conditional class
probabilities and confidence predictions of the individual
fields are multiplied as shown in the equation below (1).
Figure 3. shows the principle of the YOLO algorithm
together with the NMS function.

(1) 𝐾𝑙𝑎𝑠𝑠|𝑂𝑏𝑖𝑒𝑐𝑡ሻ ∙ 𝑃ሺ𝑂𝑏𝑖𝑒𝑐𝑡ሻ ∙ 𝐼𝑜𝑈 ൬

𝑇𝑟𝑢𝑡ℎ
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

൰ ൌ

ൌ Pሺ𝐾𝑙𝑎𝑠𝑠ሻ ∙ 𝐼𝑜𝑈 ൬
𝑇𝑟𝑢𝑡ℎ

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑛
൰

Fig.3. Operating procedure of the YOLO algorithm with NMS
function [8]

Architecture
The YOLO algorithm network is a deep convolutional

neural network. The architecture of the YOLO network is
modelled on the GoogLeNet model [9-11], however, it uses
reduction layers instead of inceptive modules. The YOLO
network is built with convolutional layers and fully
connected layers. Convolutional layers of 3x3 are used,
which are responsible for extracting image features. These
layers are alternated with 1x1 convolutional layers
responsible for reducing the feature space from the
previous layer. The convolutional layers are in turn
responsible for predicting the probability and coordinates of
objects in the image. Figure 4 shows the architecture of a
YOLO network with 24 convolutional layers and 2
connected layers [8].

Fig.4. Architecture of a YOLO network [8]

Accuracy of YOLO models
YOLO networks were tested for detection and

classification accuracy. The aim of the study was to identify
the model in the YOLO family with the highest precision in
object detection and classification and the shortest out-of-
task time. The parameter determining the performance of
the network was the average precision - mAP. The research
methodology presented in this chapter consisted of running
the YOLO algorithms on a test set of 20 randomly selected
images from the VOC2007 database. The results are
presented as graphs indicating the average detection
precision in the mAP unit commonly used in work on
detection and classification algorithms. The graphs also
show the detection and classification precision of individual
elements found in the images. The study mainly consisted
of comparing the veracity of the objects and their locations
in the images with the data calculated by the algorithms.
The results were then compiled into a mAP unit.

Initially, detection results are treated as true matches
when they have the same label and an intersection over
union (IoU = 0.5) greater than 50%. A version of the
measured precision curve with monotonically decreasing
precision is then calculated. The average precision (AP) is
calculated as the area under this curve using numerical
integration. The average of all APs is then calculated,
resulting in a mAP value from 0 to 100%.
 YOLOv2 based on the Darknet-19 architecture [12],
 YOLOv2-Tiny based on the Darknet-19 architecture

[12],
 YOLOv3 based on Darknet-53 architecture [13],
 YOLOv4 based on CSPDarknet-53 architecture [14],
 YOLOv5 based on CSPDarknet-53 architecture [14],
 YOLOv7 based on CSPVoVNet architecture [15].

YOLOv2
YOLOv2 consists of a darknet-19 network containing 19

convolutional layers and 5 max-pooling layers. Convolution
layers act as adaptive filters thatallow the image to be
processed by various methods to detail features. The

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 9/2024 31

remaining layers serve as linking layers and are responsible
for reducing the dimension and number of parameters and
computational effort. The YOLOv2 algorithm was trained
and tested on the ImageNet 1000 dataset. The YOLOv2
network was trained and validated on images from the
PASCAL VOC2007 data set. With that said, 80% of all
images were used for training. This is the standard value for
dividing the collection into training and validation parts. For
validation, the network achieved an accuracy of 19 mAP
[12]. Figure 5 shows graph of the average precision of
detected objects of YOLOv2 [16].

Fig.5. Graph of the average precision of detected objects of
YOLOv2

YOLOv2-Tiny
YOLOv2-Tiny consists of 9 convolution layers with

ReLU based activation functions and batch normalization.
These layers are interleaved with 6 max-pooling layers. The
YOLOv2-tiny network was trained on 80% of the images of
the PASCAL VOC2007 data set. The validation accuracy
was 35 mAP. Figure 6 shows graph of the average
precision of detected objects of YOLOv2-Tiny. Figure 7
shows CPU computing power consumption of YOLOv2-
Tiny.

Fig.6. Graph of the average precision of detected objects of
YOLOv2-Tiny

Fig.7. CPU computing power consumption of YOLOv2-Tiny

Figure 7 shows the consumption of each core of the
Raspberry Pi 4B processor of the YOLOv2-Tiny algorithm.
For the YOLOv2-Tiny algorithm the average CPU usage is
26.6%.

YOLOv3
YOLOv3 consists of a darkent-53 network containing 53

convolutional layers, each with batch normalization and
Leaky ReLU activation. The algorithm was trained on the
MS COCO dataset. The max-pooling layers were replaced
by strided convolutions layers. The MS COCO dataset was
used to train and validate the YOLOv3 network. As in the
previous case, 80% of the dataset was used for training.
The accuracy on the validation dataset was 28 mAP for 320
x 320 images [13]. Figure 8 shows graph of the average
precision of detected objects of YOLOv3.

Fig.8. Graph of the average precision of detected objects of
YOLOv3

YOLOv4
YOLOv4 is an advanced algorithm of which the

”backbone” of this network is darknet-53 containing 53
convolution layers and the ”neck” part, for which the
convolutional neural architecture SPP-net was chosen. It
uses spatial pyramid linking to remove the limitation of fixed
network size. The ”head” part is still a YOLO network. The
YOLOv4 network used, like the YOLOv3 network, the MS
COCO dataset, with 80% devoted to the training dataset.
For this algorithm, the accuracy on the validation set was 43
mAP [15]. Figure 9 shows graph of the average precision of
detected objects of YOLOv4. Figure 10 shows CPU
computing power consumption of YOLOv4.

Fig.9. Graph of the average precision of detected objects of
YOLOv4

32 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 9/2024

Fig.10. CPU computing power consumption of YOLOv4

Figure 10 shows the consumption of each core of the
Raspberry Pi 4B processor of the YOLOv4 algorithm. For
the YOLOv4 algorithm the average CPU usage is 46%.

YOLOv5
The YOLOv5 algorithm is a network built with 290

convolution layers. The core of the network is
CSPDarknet53, which consists of multiple CBS modules
(Convolutional Layers, Batch Normalized and SiLU), C3
modules and SPPF module. The CBS and C3 modules are
used for feature extraction, while SPPF enhances feature
expression capability. The YOLOv5 algorithm was trained
on the MS COCO dataset, which allows the detection of a
much larger number of objects than are contained in the
PASCAL VOC test set [17]. Figure 11 shows graph of the
average precision of detected objects of YOLOv5. Figure 12
shows CPU computing power consumption of YOLOv5.

Fig.11. Graph of the average precision of detected objects of
YOLOv5

Fig.12. CPU computing power consumption of YOLOv5

Figure 12 shows the consumption of each core of the
Raspberry Pi 4B processor of the YOLOv5 algorithm. For
the YOLOv5 algorithm the average CPU usage is 80.3%.

YOLOv7
The YOLOv7 algorithm is a network built with 306

convolution layers. YOLOv7 uses the E-ELAN computing
block, which stands for extended efficient layer aggregation
network. The E-ELAN architecture in YOLOv7 enables the
model to learn better by using ”expand, shuffle, merge
cardinality” to achieve the ability to continuously improve
the network’s learning capability without destroying the
original gradient path [15]. Figure 13 shows graph of the
average precision of detected objects of YOLOv7. Figure 14
shows CPU computing power consumption of YOLOv7.

Fig.13. Graph of the average precision of detected objects of
YOLOv7

Fig.14. CPU computing power consumption of YOLOv7

Figure 14 shows the consumption of each core of the
Raspberry Pi 4B processor of the YOLOv7 algorithm. For
the YOLOv7 algorithm the average CPU usage is 87.5%.

Results
During the study, the average detection precision

(figures 5-6,8-9,11,13) was determined as follows: 14.29%
for YOLOv2, 50.87% for YOLOv2-Tiny, 58.57% for
YOLOv3, 91.36% for YOLOv4, 65.64% for YOLOv5 and
91.05% for YOLOv7. In case of YOLOv5, simultaneous use
of the deep network algorithm and the operation of other
robot nodes was not possible, due to the high computing
power consumption of the on-board computer.
Nevertheless, the YOLOv5 algorithm also has errors in
proper classification e.g. the cat in the image by the
algorithm was classified as a dog.

In addition, the authors extended the research by
measuring the CPU computing power consumption of the
aforementioned algorithms. CPU consumption during the
operation of deep neural networks was measured using the
HTOP package that allows observation of computational
processes and CPU consumption in real time. Figure 12
shows the consumption of each core of the Raspberry Pi 4B
processor by the YOLOv5 and figure 7 of the YOLOv2-Tiny
algorithm. YOLOv4 (figure 10), like YOLOv3, performed the
set task in about 84s, which is too long to wait for the
detection and classification result for mobile platforms. In
addition, the YOLOv4 algorithm used 46% of the CPU’s
computing resources. YOLOv7, as shown in figure 14,
uses the most, about 88% of the CPU’s computing
resources, with a task execution time of more than 14s.

Table 1. Average CPU consumption and detection execution time
for YOLO algorithms

Algorithm mAP [%]
Total CPU
usage [%]

Detection
execution time [s]

YOLOv2 14.29 28.1 39.7

YOLOv2-Tiny 50.87 26.6 3.40

YOLOv3 58.57 26.5 85.4

YOLOv4 91.36 46.0 84.0

YOLOv5 65.64 80.3 3.94

YOLOv7 91.05 87.5 14.4

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 9/2024 33

Figure 15 shows the detection accuracy and task
execution time of the YOLOv2-Tiny algorithms. In the case
of the YOLOv2-Tiny algorithm, the task execution time was
3.4 seconds and the classification accuracy of the objects
that were successfully detected in the test image was
approximately 92%.

Analogous tests were conducted for the YOLOv3,
YOLOv4, YOLOv5, YOLOv7 algorithms. For the YOLOv3
algorithm, the number of convolutional layers was 106, the
task execution time was 85.4s, and the precision of object
detection in the test image was about 100%. For the
YOLOv4 algorithm, the number of convolution layers was
161, the task execution time was 83.1s, and the precision of
object detection in the test image was about 95%. For the
YOLOv5 algorithm, the number of convolution layers was
290, the task execution time was 3.9s, and the precision of
object detection in the test image was about 98%. For the
YOLOv7 algorithm, the number of convolution layers was
306, the task execution time was 14.3s, and the precision of
object detection in the test image was about 99%. Average
CPU consumption and detection execution time for YOLO
algorithms are summarized in the table 1. Analyzing the
consumption of computing resources of CPU cores during
the operation of detection and classification algorithms, the
YOLOv5 and YOLOv7 algorithms showed the highest
consumption of over 80%. The smallest, on the other hand,
the YOLOv3 algorithms together with YOLOv2Tiny
amounted to about 26.5%. The YOLOv2 version of the
algorithm had slightly higher CPU consumption at 28%.

Fig.15. Object detection precision and task execution time by
YOLOv2-Tiny algorithm

Conclusion
Considering the speed of the task at hand (detection

and classification time) and the amount of resource
consumption, the authors selected the YOLOv2-Tiny
algorithm as the optimal one for use on unmanned
platforms using CPUs without GPUs. The study showed
that it is an algorithm that performs the task in about 3s,
while consuming only about 27% of the computational
resources of a 4-core CPU. It is also worth mentioning that
the YOLOv5 algorithm, which has higher precision detection
and classification, performs the task just as fast. The task
execution time is approximately 4s. However, the
disadvantage of using this algorithm on a mobile robot
platform with limited computing resources (RPi 4B) is that it
consumes about 80% of the CPU resources. The YOLOv3
algorithm had the lowest CPU consumption, but the
execution time of the set task was as high as 85s, which
disqualifies it for use on an unmanned platform.

Given the current direction of technological
development, artificial intelligence is an inevitable "must-
have" in the military as well as commercial sphere. As has
already been mentioned at the beginning, they allow
inspections to be carried out and gain an information
advantage over the enemy without risking human life and

with a higher reliability factor than in the case of human
resources. However, without adequate artificial intelligence,
the one responsible for the detection and classification of
objects, it is not possible to an information advantage. In the
case of commercial applications, algorithms of this type
allow for increased public safety and will also facilitate
everyday operations in the future.

This work was co-financed by Military University of
Technology under research project UGB 826/2023.

REFERENCES
[1] Zainudin, M. N., et al., A Framework for Chili Fruits Maturity

Estimation using Deep Convolutional Neural Network, Przegląd
Elektrotechniczny, 12 (2021), 77-81,
doi:10.15199/48.2021.12.13.

[2] Khamil, K. N., Adnan, M. A. A., & Annuar, M. A. K., Design and
Development of a Sanitization Robot (ROBOSAN V2),
Przegląd Elektrotechniczny, 10 (2023), 82-87,
doi:10.15199/48.2023.10.16.

[3] Panasiuk J., Siwek M., Kaczmarek W., Borys S., Prusaczyk P.,
The concept of using the mobile robot for telemechanical wires
installation in pipelines, p. 020054. doi:10.1063/1.5066516

[4] Zuniga W. P. C., Navarro J. J. Q., Diaz J. D. P., J. Tavera S.,
A. Montoya A., Design of a Terrain Mapping System for Low-
cost Exploration Robots based on Stereo Vision, Przegląd
Elektrotechniczny, 5 (2023), 270-275,
doi:10.15199/48.2023.05.46.

[5] Rezoug, N., Zerikat, M., & Chekroun, S., An efficient fuzzy pi
approach to real-time control of a ros-based mobile robot.
Przegląd Elektrotechniczny, 2 (2022), 1-5,
doi:10.15199/48.2022.02.01.

[6] Siwek M., Panasiuk J., Baranowski L., Kaczmarek W.,
Prusaczyk P., Borys S., Identification of differential drive robot
dynamic model parameters, Materials 16 683.
doi:10.3390/ma16020683.

[7] Siwek M., Baranowski L., Panasiuk J., Kaczmarek W.,
Modeling and simulation of movement of dispersed group of
mobile robots using simscape multibody software, p. 020045.
doi:10.1063/1.5092048.

[8] Redmon J., Divvala S., Girshick R., Farhadi A., You only look
once: Unified, real-time object detection.

[9] Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov
D., Erhan D., Vanhoucke V., Rabinovich A., Going deeper with
convolutions, IEEE, pp. 1–9. doi:10.1109/CVPR.2015.7298594.

[10] Hosang J., Benenson R., Schiele B., Learning non-maximum
suppression, Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, 4507-4515..

[11] L. L. Yin, M. N. Shah Zainudin, W. H. Mohd Saad, N. A.
Sulaiman, M. I. Idris, M. R. Kamarudin, R. Mohamed, M. S. J.
A Razak. Analysis Recognition of Ghost Pepper and Cili-Padi
using MaskRCNN and YOLO, Przegląd Elektrotechniczny, 08
(2023), 92-97, doi:10.15199/48.2023.08.15.

[12] Redmon J., Farhadi A.. 2016. Yolo9000: Better, faster,
stronger, Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, 7263-7271.

[13] Redmon J., Farhadi A., YOLOv3: An Incremental Improvement,
arXiv:1804.02767, University of Washington 2018.

[14] Bochkovskiy A., Wang C.-Y., Liao H.-Y. M., Yolov4: Optimal
speed and accuracy of object detection, arXiv preprint
arXiv:2004.10934 (2020).

[15] Wang C.-Y., Bochkovskiy A., Liao H.-Y. M., YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object
detectors, arXiv:2207.02696 (2022).

[16] Raji F., Miao L., Optimal wireless rate and power control in the
presence of jammers using reinforcement learning. ITU Journal
on Future and Evolving Technologies. Volume 3, Issue 2, 508-
522 (2022), doi:10.52953/ANSC4385.

[17] Jocher G., ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime
Instance Segmentation, Zenodo, lis. 22, 2022. doi:
10.5281/zenodo.7347926.

