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Identification, Analysis and Implementation of Model Predictive 
Controller (MPC) for Binary Distillation Column 

 
 
 
Abstract. Distillation column is one of the important equipment in petroleum refining; it is used to separate two or more components from a 
homogenous fluid mixture. The aim of the present work is to identify the model of real binary distillation column installed in SKIKDA Refinery, to 
design a suitable controller using model predictive control (MPC) concepts. The distillation column has 36 trays with feed entering on the 27th tray it 
is used to separate Naphta B from Naphta C. The distillation column model was developed through an experimental identification using MATLAB 
Toolbox. A suitable model predictive controller was designed to enhance productivity throughout the distillation process by the use of MATLAB 
software simulation.  
 
Streszczenie. Kolumna destylacyjna jest jednym z ważnych urządzeń w rafinacji ropy naftowej; służy do oddzielania dwóch lub więcej składników z 
jednorodnej mieszaniny płynów. Celem niniejszej pracy jest zidentyfikowanie modelu rzeczywistej binarnej kolumny destylacyjnej zainstalowanej w 
rafinerii SKIKDA, aby zaprojektować odpowiedni sterownik przy użyciu koncepcji sterowania predykcyjnego modelu (MPC). Kolumna destylacyjna 
ma 36 półek z wsadem wprowadzanym na 27 półkę, która służy do oddzielania nafty B od nafty C. Model kolumny destylacyjnej został opracowany 
poprzez eksperymentalną identyfikację przy użyciu MATLAB Toolbox. Odpowiedni sterownik predykcyjny modelu został zaprojektowany w celu 
zwiększenia wydajności w całym procesie destylacji przy użyciu symulacji oprogramowania MATLAB.  9 (Identyfikacja, analiza i implementacja 
modelu regulatora predykcyjnego (MPC) dla kolumny destylacyjnej binarnej) 
 
Keywords: MPC; DMC; Receding Horizon; Step Response; Distillation Column; System Identification Toolbox. 
Słowa kluczowe: DMC; Ustępujący horyzont; Odpowiedź skokowa; Kolumna destylacyjna; Skrzynka narzędziowa identyfikacji systemu 
 
 
Introduction 

Distillation control has been the subject of many books 
and papers over the past half century [1-4]. Distillation is a 
method for separating binary and multicomponent liquid 
mixtures into pure components. Even today, it belongs to 
the most commonly applied separation technologies and is 
used at large scale. The separation process requires three 
things. Firstly, a second phase must be formed so that both 
liquid and vapor phases are present and can contact each 
other on each stage within a separation column. Secondly, 
the components have different volatilities so that they will 
partition between the two phases to a different extent. 
Lastly, the two phases can be separated by gravity or other 
mechanical means. 

Distillation columns come in many flavors, and no one 
control structure fits all columns. Differences in feed 
compositions, relative volatilities, product purities, and 
energy costs impact the selection of the “best” control 
structure for a given column in a given plant. Researchers 
have tried to control distillation column using different 
conventional as well as intelligent control techniques. 
Nonlinear control [5], nonlinear model predictive control [6], 
robust control [7], and model predictive control [8-9]. 

In this paper we will simulate an MPC control of a 
distillation column. Predictive control is a field which has 
attracted much research interest and attention over recent 
decades, judging by the number of publications available, 
addressing theoretical and application issues. 

The paper is organized in five sections. After this 
introduction, section 2 talks about the distillation column 
principle. Section 3 gives more detail about the distillation 
set-up subject of study and its corresponding system 
identification procedure used in this work. The section 4 
gives a review to MPC method and theory. In section 5, a 
chemical process is introduced and simulation results are 
shown. Final section gives some concluding remarks. 

 
Distillation Column 

Distillation columns are made up of several 
components, each of which is used either to transfer heat 

energy or to enhance mass transfer. A typical distillation 
column contains a vertical column where trays or plates are 
used to enhance the component separations, a reboiler to 
provide heat for the necessary vaporization from the bottom 
of the column, a condenser to cool and condense the vapor 
from the top of the column, and a reflux drum to hold the 
condensed vapor so that liquid reflux can be recycled back 
from the top of the column. Most of distillation control 
systems, either conventional or advanced, assume that the 
column operates at a constant pressure. Pressure 
fluctuations make the control more difficult and reduce the 
performance. The liquid flow rate L and the vapor flow rate 
V are the control inputs. The objective of the controller is to 
maintain the product outputs concentrations of the Top 
product and the bottom product despite the disturbance in 
the feed flow F and the feed concentration.  

The first step in any distillation calculation is to establish 
the material and energy balances over the unit. A total 
material balance over the whole column unit at steady state 
can be described as [10], [11]:  

 

(1)                               𝐹 ൌ 𝐵 ൅ 𝐷                                     
  

 Where F is the molar flow rate of the feed, D is the molar 
flow rate of the distillate and B is the molar flow rate of the 
bottom. The corresponding component balance for a binary 
mixture as (the mole fractions are with reference to the 
most volatile component): 
 

(2)                              𝐹𝑧ி ൌ 𝐵𝑥஻ ൅ 𝐷𝑥஽                              
               

Separate balances can also be set up over subsections of 
the column, e.g. over the top of the column: 
 

(3)                        𝑉௡ାଵ ൌ 𝐿௡ ൅ 𝐷                               
 (4)                         𝑉௡ାଵ𝑦஽ ൌ 𝐿௡𝑥஽ ൅ 𝐷                                  
 

Where 𝑉௡ାଵ is the molar flow rate of the vapor into the top 
section and Ln is the molar flow rate of liquid leaving the top 
section. Equivalently, balances over the bottom of the 
column are: 
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(5)                                  𝑉௠ ൌ 𝐿௠ିଵ ൅ 𝐵                          
 

(6)                                       𝑉௠𝑦௠ ൌ 𝐿௠ିଵ𝑥௠ିଵ െ 𝐵𝑥஻                                                    
 

Where 𝐿௠ିଵ is the molar flow rate of the liquid into the 
bottom section and 𝑉௠ is the molar flow rate of vapor 
leaving the bottom section. 

Balances can also be established over each stage. For 
stage n, four streams are involved as shown in Fig.1: the 
vapor stream entering stage n from the stage below (n+1), 
the liquid stream entering stage n from the stage above (n-
1), and the vapor and liquid streams leaving stage n, 
respectively. The total and component material balances 
over stage n at steady state are thus given by: 

 
(7)                           𝑉௡ାଵ ൅ 𝐿௡ିଵ ൌ 𝐿௡ ൅ 𝑉௡                       
 
(8)                      𝑉௡ାଵ𝑦௡ିଵ ൅ 𝐿௡ିଵ𝑥௡ିଵ ൌ 𝐿௡𝑥௡ ൅ 𝑉௡𝑦௡                                 
 

 
 

Fig.1: Distillation Column 
 

Note that we choose to number the stages starting from the 
bottom of the column. We denote Ln and Vn as the total 
liquid- and vapour molar flow rates leaving stage n (and 
entering stages n-1 and n, respectively). 
Based on the equilibrium stage concept [12], a distillation 
column section is modelled as:  
The global mass balance for the volatile component on 
stage i:  

(9)                       
𝒅𝑴𝒊

𝒅𝒕
ൌ 𝑳𝒊ା𝟏 െ 𝑳𝒊 ൅ 𝑽𝒊ି𝟏 െ 𝑽𝒊                     

Component balance: 
 

 (10)              
𝒅ሺ𝑴𝒊𝒙𝒊ሻ

𝒅𝒕
ൌ 𝑳𝒊ା𝟏𝒙𝒊ା𝟏 െ 𝑳𝒊𝒙𝒊 ൅ 𝑽𝒊ି𝟏𝒚𝒊ି𝟏 െ 𝑽𝒊𝒚𝒊         

 
By differentiating (10) and substituting for (9), the following 
expression is obtained: 
 

(11)          
𝒅𝒙𝒊

𝒅𝒕
ൌ

𝑳𝒊శ𝟏𝒙𝒊శ𝟏ା𝑽𝒊ష𝟏𝒚𝒊ష𝟏ିሺ𝑳𝒊శ𝟏ା𝑽𝒊ష𝟏ሻ𝒙𝒊ି𝑽𝒊ሺ𝒚𝒊ି𝒙𝒊ሻ

𝑴𝒊
                   

 Energy balance: 
 

(12)      
𝒅ሺ𝑴𝒊𝒉𝒊ሻ

𝒅𝒕
ൌ 𝒉𝒊ା𝟏𝑳𝒊ା𝟏 െ 𝒉𝒊𝑳𝒊 ൅ 𝑯𝒊ି𝟏𝑽𝒊ି𝟏 െ 𝑯𝒊𝑽𝒊                     

Or  

(13)      𝑴𝒊
𝒅𝒉𝒊

𝒅𝒕
൅ 𝒉𝒊

𝒅𝑴𝒊

𝒅𝒕
ൌ 𝒉𝒊ା𝟏𝑳𝒊ା𝟏 െ 𝒉𝒊𝑳𝒊 ൅ 𝑯𝒊ି𝟏𝑽𝒊ି𝟏 െ 𝑯𝒊𝑽𝒊                

 

Because the term 
𝒅𝒉𝒊

𝒅𝒕
 is approximately zero, substituting for 

the change of hold up 
𝒅𝑴𝒊

𝒅𝒕
 in (13), and rearranging the 

terms, the following expression is obtained: 
 

(14)                                               

𝑽𝒊 ൌ
𝒉𝒊శ𝟏𝑳𝒊శ𝟏ା𝑯𝒊ష𝟏𝑽𝒊ష𝟏ିሺ𝑯𝒊𝑽𝒊ା𝒉𝒊𝑳𝒊ሻ

𝑯𝒊ି𝒉𝒊
  

 

Equations for the feed tray: (Stage n=f)  
 

Total mass balance: 
 

(15)              
𝒅൫𝑴𝒇൯

𝒅𝒕
ൌ 𝑭 ൅ 𝑳𝒇ା𝟏 ൅ 𝑽𝒇ି𝟏 െ 𝑳𝒇 െ 𝑽𝒇                        

 

Component balance: 
 

(16)      

𝒅ሺ𝑴𝒊𝒙𝒊ሻ

𝒅𝒕
ൌ 𝑭𝒁𝑭 ൅ 𝑳𝒇ା𝟏𝒙𝒇ା𝟏 ൅ 𝑽𝒇ି𝟏𝒚𝒇ି𝟏 െ 𝑳𝒇𝒙𝒇 െ 𝑽𝒇𝒚𝒇 

⇒
𝒅𝒙𝒊

𝒅𝒕
ൌ

𝑳𝒊శ𝟏𝒙𝒊శ𝟏ା𝑽𝒊ష𝟏𝒚𝒊ష𝟏ିሺ𝑳𝒊శ𝟏ା𝑽𝒊ష𝟏ሻ𝒙𝒊ି𝑽𝒊ሺ𝒚𝒊ି𝒙𝒊ሻ

𝑴𝒊

           

 

Energy balance: 
 

 (17)     

𝒅൫𝑴𝒇𝒉𝒇൯

𝒅𝒕
ൌ 𝒉𝒇𝑭 ൅ 𝒉𝒊ା𝟏𝑳𝒊ା𝟏 ൅ 𝑯𝒊ି𝟏𝑽𝒊ି𝟏 െ 𝒉𝒊𝑳𝒊 െ 𝑯𝒊𝑽𝒊

⇒ 𝑽𝒊 ൌ
𝒉𝑭𝑭ା𝒉𝒊శ𝟏𝑳𝒊శ𝟏ା𝑯𝒊ష𝟏𝑽𝒊ష𝟏ିሺ𝑳𝒊శ𝟏ା𝑽𝒊ష𝟏ሻ𝒉𝒊ି𝑽𝒊ሺ𝒚𝒊ି𝒙𝒊ሻ

𝑯𝒊ି𝒉𝒊

            

 

Equations for the top tray (stage n=N+1) 
 

Total mass balance: 
 

(18)                  
𝒅ሺ𝑴𝑵ሻ

𝒅𝒕
ൌ 𝑳 ൅ 𝑽𝑵ି𝟏 െ ሺ𝑳𝑵 ൅ 𝑽𝑵ሻ                               

 

Component balance: 
 

(19)         
𝒅ሺ𝑴𝑵𝒙𝑵ሻ

𝒅𝒕
ൌ 𝑳𝒙𝑫 ൅ 𝑽𝑵ି𝟏𝒚𝑵ି𝟏 െ 𝑳𝑵𝒙𝑵 െ 𝑽𝑵𝒚𝑵                         

 

Energy balance: 
 

(20)    

𝒅ሺ𝑴𝑵𝒉𝑵ሻ

𝒅𝒕
ൌ 𝒉𝑫𝑳 ൅ 𝑯𝑵ି𝟏𝑽𝑵ି𝟏 െ ሺ𝒉𝑵𝑳𝑵 ൅ 𝑯𝑵𝑽𝑵ሻ

⇒ 𝑽𝑵 ൌ
𝒉𝑫𝑳ା𝑯𝑵ష𝟏𝑽𝑵ష𝟏ିሺ𝑳ା𝑽𝑵ሻ𝒉𝑵

𝑯𝑵ି𝒉𝑵

                      

 

Bottom Tray (stage n=2) 
 

Total mass balance: 
 

(21)                   
𝒅ሺ𝑴𝟐ሻ

𝒅𝒕
ൌ 𝑳𝟑 െ 𝑳𝟐 ൅ 𝑽𝑩 െ 𝑽𝟐                                

 

Component balance: 
 

(22)             
𝒅ሺ𝑴𝟐𝒙𝟐ሻ

𝒅𝒕
ൌ 𝑳𝟑𝒙𝟑 െ 𝑳𝟐𝒙𝟐 ൅ 𝑽𝑩𝒚𝑩 െ 𝑽𝟐𝒚𝟐                      

 

Energy balance: 
 

(23)       

𝒅ሺ𝑴𝑩𝒉𝑩ሻ

𝒅𝒕
ൌ 𝒉𝟑𝑳𝟑 ൅ 𝑯𝑩𝑽𝑩 െ 𝒉𝟐𝑳𝟐 െ 𝑯𝟐𝑽𝟐 

⇒ 𝑽𝟐 ൌ
𝒉𝟑𝑳𝟑ା𝑯𝑩𝑽𝑩ିሺ𝑳𝟑ା𝑽𝑩ሻ𝒉𝟐

𝑯𝟐ି𝒉𝟐

                         

 

Re-boiler and Column Bottoms (stage n=1) 
Total mass balance: 
 

(24)                         
𝒅𝑴𝟏

𝒅𝒕
ൌ 𝑳𝟐 െ 𝑽𝟏 െ 𝑩                                        

                                       

 
 
 
 
 
   
 
          
 
 
 
 
 
 

     Condenser 

Reflux  

Partiel 
roboilier 

- - - - -

Rectification 
Section 

Feed  stage 

Stripping 
section 

Bottoms 

Feed 

 FzF 

L 

V 

Bx

 DxD 

Distillate 

Reflux  
Drum



186                                                                           PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 9/2024 

(25)                     
𝒅ሼ𝑴𝟏𝒙𝟏ሽ

𝒅𝒕
ൌ 𝑳𝟐𝒙𝟐 െ 𝑽𝟏𝒚𝟏 െ 𝑩𝒙𝟏                        

 

Energy balance: 
 

(26)          

𝒅ሺ𝑴𝟏𝒉𝟏ሻ

𝒅𝒕
ൌ 𝒉𝟐𝑳𝟐 ൅ 𝑸𝑩 െ ሺ𝒉𝟏𝑩 ൅ 𝑯𝟏𝑽𝟏ሻ 

⇒ 𝑽𝟏 ൌ
𝒉𝟐𝑳𝟐ା𝑸𝑩ି𝒉𝟏𝑩ି𝑴𝑩

𝒅𝒉𝟏
𝒅𝒕

ି𝒉𝟏
𝒅𝑴𝟏

𝒅𝒕

𝑯𝟏

             

 

Process Description 
       Crude from storage tanks located in offsite area flows 
under gravity to the CDU plant battery limit and further 
pumps to pre-flash drum inlet through Crude charge pumps. 
The crude is preheated in existing preheat train. Preheated 
crude then enters to Desalter for removal of salts crude. 
The crude from Desalter is further heated and flashed in 
pre-flash drum where water and light ends in the crude oil 
are flashed-off. Preheated crude is furtherer heated and 
partially vaporized in to two parallel operating existing 
Charge Heaters. The Heater is designed with fuel gas firing 
burners.  

Atmospheric column has three side draws: Kerosene 
(kero), Light Gas Oil (LGO) and Heavy Gas Oil (HGO) all of 
which are drawn through side strippers. Unstabilized 
naphtha after is fed to Stabilizer-A & Stabilizer B Bottom 
product, Stabilized Naphtha product is directly routed under 
its own pressure to splitter-I. Splitter-I bottom product 
(Naphtha B+C) is pumped to Splitter-II and C6 Cut Splitter. 
C6 cut Splitter bottom product is pumped and joined with 
the Splitter-II bottoms to make Naphtha product stream. 
Splitter-II column has 36 trays with feed entering on the 
27th tray. Column is operated at temperature & pressure 
140 °C & 1.0 kg/cm2g. The overhead products go to Reflux 
Drum after totally being condensed in condenser. 
Condensed overhead liquid is collected in Splitter-II Reflux 
Drum. Accumulated liquid in reflux drum is sucked by 
pumps and sent as reflux to the column overhead (on the 
36th tray). Liquid distillate Naphtha B (Overhead 
condensate) is sent to storage However before going to 
storage the product is further cooled via the Cooler to 
achieve the temperature of 38°C.  

Column bottom product is heated in shell side 
exchanger Reboiler through Hot Oil. Reboiler outlet 
temperature is controlled by regulating the hot oil flow 
through reboiler via temperature controller which acts by 
sensing the 3rd tray temperature of the column.  

Reboiling liquid goes back to column under tray 1. 
Bottom product of splitter II (Naphtha C), sucked by bottom 
pumps is sent to storage via passing through various 

exchangers for cooling, Column bottom is operated at 
temperature 204.2°C. Bottom product joined by Naphtha C 
from C6 Cut Splitter coming at 140°C, is sent to Stabilizer 
Feed / Splitter-II Bottom Exchanger first for reducing the 
average temperature from 154°C to 132°C. This stream is 
further cooled by passing through Splitter-Bottom Cooler 
and Naphtha C Water Cooler to reduce the temperature to 
38°C. 
 

Process Variables 
       In general, the control of any system is based on its 
dynamics; for distillation column, many control 
configurations are used [13-14]. In our case we choose an 
LV configuration. The L-V control structure, which is called 
energy balance structure, can be viewed as the standard 
control structure for dual composition control of distillation 
column. In this control structure, the reflux flow rate L and 
the boil-up flow rate V are used to control the “primary” 
outputs associated with the product specifications.  
To generate an informative input/output data set of a 
process, it is necessary to vary the inputs of the process in 
some fashion so that there are deviations in the process 
outputs. The frequency at which an input is changed must 
be related to the dominant time constant of the process. If 
the switching frequency is too high, very little effect is seen 
in the process outputs. If the switching frequency is too low, 
stead y-state gain information is present in the data but very 
little information on the transient or dynamic characteristics 
of the process. To obtain useful process data, the input 
sequences must have a reasonable magnitude of variation. 
That is, the change in input signal must be such that the 
output signal variation is noticeable above process noise 
and disturbances [15]. 

The distillation column case of study is considered as a 
2x2 system [16] where the inputs are the Reflux (L) and the 
boil up (V) and as outputs we have the top and bottom 
temperatures (concentrations). 
 

Distillation Column Set Up 
Description 
       The control of SKIKDA refinery is managed by the 
YOKOGAWADCS (CS3000), an OPC server (EXAOPC 
server) is installed to allow communication between the 
DCS and other subsystems, and we used it for data 
collection, a PC in which we installed the MATLAB with the 
following toolboxes: OPC Toolbox and System Identification 
Toolbox according to the following System Architecture 
(Fig.2): 

 
 

 
Fig.2: System Architecture  
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Where: FCS: Field Control Station; HIS: Historian 
Information System; ENG: Engineering Function 
PRM: Plant Resource Manager; Exacopc: software 
component developed by Yokogawa Electric Corporation; 
GCGW: Generic Subsystem Gateway Package, PLCs: 
Programmable Logic Controllers 
 
Exaquantum / Batch: is an intelligent and scalable ISA-88 
based Batch PIMS (Plant Information Management 
System). 
Exaopc: is an OPC server running on a Microsoft Windows 
platform which can be connected to a variety of PCSs 
(Process Control Systems) providing OPC clients with 
process data and alarm events 

To ensure the communication between the OPC Server 
(EXAOPC) and the OPC Client (MATLAB PC) we should 
set the IP address of the OPC client to be in the same 
domain of the OPC Server. Once the communication is 
established, we begin to access to DCS controller (FCS) 
that contained the requested Tags.  
 
Model Identification 

Using MATLAB Toolbox, we have estimated the 
mathematical model of the distillation column by choosing 
the process model estimation method. Before starting the 
identification of our system, a pre-processing of the data is 
required in order to eliminate the measurement noise and 
for this purpose we have to use a filter. In our work we 
considered that our system is linear [17] and therefore it is 
subjected to the principle of superposition because we will 
determine the relation between the first input and the two 
outputs and the same will be done for the second input so 
each output will be a function of the two inputs. 
         In order to have a good and reliable model, we have 
to select useful portions of the original data which describe 
the dynamics of the distillation column. It is good and 
common practice in identification to evaluate an estimated 
model’s properties using a fresh data set, that is, one that 
was not used for the estimation. It is thus good advice to let 
the Validation Data be different from the Working Data, but 
they should of course be compatible with these. All 
estimation routines are accessed from the pop-up menu 
Estimate in the Ident window. The models are always 
estimated using the data set that is currently in the Working 
Data box [18]. The aim of this study is to construct a linear 
MIMO black-box model for the distillation column. This 
model will be created from a set of MISO submodels. The 
resulting models are ranked based on their Fit value. The 
results of the transient response based on open loop 
system are shown in Figures (Fig.3(a)-6(a)) for different 
step changes of Reflux Flow Rate (R) and 
SetTempReboiler heat duty (H) on the controlled variables 
the distillate composition (𝑋஽) and bottom composition (𝑋஻) 
(See Fig.3(b)-6(b)).  
 The identification process was performed by applying 
random magnitude input step changes of random duration. 
The steps were made in both positive and negative 
directions (Reflux flow rate of 77-83 m3/h and a 
SetTempReboiler of 197-199 m3/h) to ensure that the model 
accounts for the ill-conditioning. The results of the 
identification are shown in Figures (Fig.3(c)-6(c)). Figures, 
Fig.3(c) and Fig.4(c), depict the estimation plot for the top 
Temperature with the Reflux flow rate and 
SetTempReboiler inputs respectively, therefore, the 
Figures, Fig.5(c) and Fig.6(c), illustrate the estimation plot 
for the Bottom Temperature with the Reflux flow rate and 
SetTempReboiler inputs respectively. As model validation, 
the prediction of the dataset is compared with the measured 

data based on a Fit measure according the (Eq. 26) as 
follow: 
 

(27)               𝑭𝒊𝒕 ൌ 𝟏𝟎𝟎% ቀ𝟏 െ
|𝒚ෝሺ𝒕ሻି𝒚ሺ𝒕ሻ|

|𝒚ሺ𝒕ሻି𝒚ഥሺ𝒕ሻ|
ቁ                             

 

       The obtained fit function results are presented in the 
Table 1. 
Table 1- Illustrates the results of the Fit measure: 

 Input Fit (%) 
Top Temperature Flow Reflux 52.65 

Set Temp Reboiler 66.33 

Bottom Temperature Flow Reflux 55.25 

Set Temp Reboiler 29.67 

 
The following models for the top and bottom temperature 
are combined into one MIMO transfer function model given 
in Eq. (28) with time constants and delays in seconds. 
 

(28)    ൤
𝑋஽
𝑋஻

൨ ൌ ቎

ଵଽଷ.ସ௦ାଵ.଺ଵଷ

଻ହଶଽ௦మା଻ଽ.଻଻ ୱ ାଵ
e ିଵ.ଽ଻ୱ ଵହ.଼଻ ୱ ା ଶ.ସ଺ହ

ଵ଻ହ଼௦మ ା ଶଵସ.ଵୱ ା ଵ
ଵଷସ.ଷ ௦ ା ଴.଺ଽଶ଼

ଵ଴ଵଶ ௦మାଶଵ଴.ଽ ௦ାଵ
e ି଴.଴ଷ଼ୱ ି଴.଻଴଻ଽ ௦ ା ଵ.଴ଶ଺

ଶ଻.ହ଺௦మାଵଵ.ଽଽ ௦ାଵ

቏ ቂ𝐿
𝑉

ቃ   

 
The plant is having two controlled variables y1, y2 and 

two manipulated variables u1, u2. The two controlled 
variables are composition of the distillate product (𝑿𝑫) and 
bottom product (𝑿𝑩). The manipulated variables are reflux 
(L) and reboiler flow rate (V). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3: Column distillation Responses, (a) Top                      
Temperature measure from Flow Reflux input, (b) Flow      Reflux 
input, (c) Validation of the Top temperature from Flow Reflux input 
(Fit function=52.65%) 
 
 
 

(a)

(b)

(c)
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Fig.4: Column distillation Responses, (a) Top Temperature 
measure from Set Temp Reboiler input, (b) Set Temp Reboiler 
input, (c) Validation of the Top temperature from Set Temp Reboiler 
input (Fit function=66.33%) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5: Column distillation Responses, (a) Bottom Temperature 
measure from Flow Reflux input, (b) Flow    Reflux input, (c) 
Validation of the Bottom temperature from Flow Reflux input (Fit 
function=55.25%) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Column distillation Responses, (a) Bottom  
Temperature measure from Set Temp Reboiler input, (b) Set Temp 
Reboiler input, (c) Validation of the Bottom Temperature from Set 
Temp Reboiler input (Fit function=29.67%) 
 
Model Analysis 
        Residual (estimation errors) analysis is a very well 
developed field of model diagnosis and validation [19] and 
is very much a strong component of cross-validation. An 
enormous amount has been written about this field and 
many text books have been published providing its different 
applications and adaptations [20 & 21]. Studying the 
difference between the model output and the output of the 
true systems, residual analysis, allows for the study of the 
existence and nature of model inadequacies, thus its place 
in model validation. The analysis of correlations amongst 
estimation residuals (estimation errors) and between the 
estimation residuals and the system inputs are commonly 
used linear validation approaches. This analysis may be 
considered as a direct quantification of the concept behind 
residual plotting and consists of the following two tests [22]:  

 The Whiteness Test: This test is based on the condition 
that the residuals or the prediction errors between the 
model and the system, of a good model should be 
independent of each other and of past data. Therefore, a 
good model has residuals that are uncorrelated. 
 

 The Independence Test: Is a measure of the correlation 
between the residuals and the corresponding inputs. A 
good model has residuals uncorrelated to past inputs. The 
identified model was the subject of the two tests as shown 
in the figures below (Fig.7-10).  
 The results of the analysis test are shown in Figures 
(Fig. 7- 10). Figures (Fig.7(a) – 10(a)) depict the correlation 
function of output residuals between the estimation model 
and measured data. This measure is close to one indicating 
the good estimation of the column distillation MIMO model. 
However, Figures (Fig.7(b) – 10(b)) show the correlation 
function between inputs and residuals from outputs. This 

(b)

(a)

(a)

(b)

(b)

(a)

(c)

(c)

c) (
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measure is used to investigate the coupling between the 
input and output model. The results give an element close 
to zero to indicate a less influence for the corresponding 
output. A good model has residuals uncorrelated to past 
inputs. 
 

 
 

Fig.7: Performance test of the Column distillation model, (a) 
Correlation function of Output Top Temp residuals, (b) Cross-
correlation function between input Flow Reflux and Output Top 
Temp residuals. 

 
 

Fig.8: Performance test of the Column distillation model, (a) 
Correlation function of Output Top Temp residuals, (b) Cross-
correlation function between input Set Temp Reboiler and Output 
Top Temp residuals. 
 

 
 

Fig.9: Performance test of the Column distillation model, (a) 
Correlation function of Output Bot Temp residuals, (b) Cross-
correlation function between input Flow Reflux and Output Bot 
Temp residuals. 

 
 
Fig.10: Performance test of the Column distillation model, (a) 
Correlation function of Output Bot Temp residuals, (b) Cross-
correlation function between input Set Temp Reboiler and Output 
Bot Temp residuals. 
 
Model Predictive Controller 
       Model predictive control refers to the class of control 
algorithms that compute a manipulated input profile by 
utilizing a process model to optimize an open loop 
performance objective subject to constraints over a future 
time horizon. It is based on three concepts which are [23]: 
 Explicit use of a model to predict the process output at 

future time instants. 
 Calculation of a control sequence minimizing an 

objective function. 
 Receding strategy, so that at each instant the horizon is 

displaced towards the future, which involves the 
application of the first control signal of the sequence 
calculated at each step. 
MPC includes several algorithms (DMC, MAC, GPC, 

PFC, EPSAC, EHAC…..etc) we will shed light on the state-
space model algorithm. The fundamental framework of 
MPC algorithms is common for any kind of MPC schemes 
[24]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.11: MPC Scheme  
 
Suppose that we have a state-space representation of a 
MIMO system (m inputs and q outputs): 
 

(29)             ൜
𝒙𝒎ሺ𝒌 ൅ 𝟏ሻ ൌ 𝑨𝒎𝒙𝒎ሺ𝒌ሻ ൅ 𝑩𝒎𝒖ሺ𝒌ሻ

𝒚ሺ𝒌ሻ ൌ 𝑪𝒎𝒙𝒎ሺ𝒌ሻ          
     

                                                               
The augmented system is obtained by choosing a new state 
variable vector  

Future 
Errors  

Contraints  
Cost 

 Function  

Past Inputs 
and Outputs

Future 
 Inputs  

Predicted 
 Outputs  

Basic Structure of MPC  

Optimiser 

Model 
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(30)                         𝒙ሺ𝒌ሻ ൌ ሾ∆𝒙𝒎ሺ𝒌ሻ𝑻 𝒚ሺ𝒌ሻሿ            
 

The new augmented system: 
 

(31)  ൤
  ∆𝒙𝒎ሺ𝒌 ൅ 𝟏ሻ 

𝒚ሺ𝒌 ൅ 𝟏ሻ ൨ ൌ ൤
𝑨𝒎    𝒐𝒎     

𝑻

𝑪𝒎𝑨𝒎𝑰𝒒ൈ𝒒
൨ ൤

∆𝒙𝒎ሺ𝒌ሻ
𝒚ሺ𝒌ሻ ൨ ൅ ൤

𝑩𝒎
𝑪𝒎 𝑩𝒎

൨ ∆𝒖ሺ𝒌ሻ 

                                                                                   

 (32)                        𝑦ሺ𝒌ሻ ൌ ൣ𝒐𝒎 𝑰𝒒ൈ𝒒൧ ൤
∆𝒙𝒎ሺ𝒌ሻ

𝒚ሺ𝒌ሻ ൨                                          

 

The outputs are: 
 

(33)                           𝒀 ൌ 𝑭𝒙ሺ𝒌𝒊ሻ ൅ ∅∆𝑼                            
 

Where: 

(34)                                𝑭 ൌ

⎣
⎢
⎢
⎢
⎢
⎡

𝑪𝑨
𝑪𝑨𝟐

𝑪𝑨𝟑

.

.
𝑪𝑨𝑵𝒑⎦

⎥
⎥
⎥
⎥
⎤

                                                                          

And ∅ is:       
         

(35)    ∅ ൌ

⎣
⎢
⎢
⎢
⎢
⎡

𝑪𝑩 𝟎 𝟎 … 𝟎
𝑪𝑨𝑩 𝑪𝑩 𝟎 … 𝟎

𝑪𝑨𝟐𝑩 𝑪𝑨𝑩 𝑪𝑩 … 𝟎
. . . … .
. . . … .

𝑪𝑨𝑵𝒑ష𝟏𝑩 𝑪𝑨𝑵𝒑ష𝟐𝑩 𝑪𝑨𝑵𝒑ష𝟑𝑩 … 𝑪𝑨𝑵𝒑ష𝑵𝒄𝑩⎦
⎥
⎥
⎥
⎥
⎤

    

         
The optimal solution for the control is: 
 

(36)    ∆𝑼 ൌ ሺ∅𝑻∅ ൅ 𝑹ᇱሻି𝟏൫∅𝑻𝑹ᇱ
𝒔𝒓ሺ𝒌𝒊ሻ െ ∅𝑻𝑭𝒙ሺ𝒌𝒊ሻ൯           

 
Simulation Results: 
        The real time data are taken from the Real Pilot 
distillation column. After black-box linear system 
identification, the model parameters are obtained from the 
experimental responses curves for the step change in the 
above binary distillation column. The controller objective is 
to minimize the difference between the controlled 
temperature and its reference trajectory, together with 
minimal change of the inputs between two successive MPC 
steps. The weight matrix 𝑸𝒖 for the inputs is adapted to 
encourage the use of the flow rates of the column. The 
weight matrix 𝑸𝒚 for the outputs punished the deviation for 
the top temperature slightly more than that of the reboiler 
temperature. The MPC controller for the Pilot distillation 
column validated using MATLAB environment and the 
result are obtained through the simulation study. 
         In MIMO system, the model horizon M is determined 
according to the slowest response output. The slowest step 
response curve is observed for the Top Temperature to 
step change in Fig.12. The simulation has been done with 
respect to the following considerations: The prediction 
horizon (P=25) and the control horizon (C=25).  The chosen 
tuning parameters for MPC algorithm are as Follows: 
 

𝑻𝒔 ൌ 𝟓𝐬, 𝑵 ൌ 𝟐𝟎𝟎𝟎, 𝑸𝒚 ൌ 𝟏𝟎 𝒂𝒏𝒅 𝑸𝒖 ൌ 𝟎. 𝟑  
 

       During the simulation both constrained and 
unconstrained MPC control are  implemented considering 
two manipulated variables (Reflux Flow Rate (R) and 
SetTempReboiler heat duty (H)) and controlled variables 
the distillate composition (𝑿𝑫) and bottom composition (𝑿𝑩) 
of binary distillation column. The response reaches the 
steady state, even in the presence of disturbance. 
In order to assess the proposed control scheme, the 
simulation was executed according to these scenarios: 
 

Case Study I: Healthy System 
       In this case study, step response model without 
disturbance is used for MPC design. In order to get 
coefficients of step response model, it is necessary to 
obtain the open loop responses of controlled variables by 
giving unit step changes to the manipulated variables. The 
responses of controlled variables, the distillate composition 
(𝑿𝑫) and bottom composition (𝑿𝑩) of binary distillation 
column, are shown in Figure (Fig.12). 
Results discussion of case_01  
      The simulation scenario considers temperature-tracking 
problem with step change in reference. The step change of 
temperature on top of the column was performed, from 
steady state 𝑦௦  ൌ  130°𝐶 to desired 𝑦 ൌ  128°𝐶 and bottom 
of the column 𝑦௦  ൌ  200°𝐶 to desired 𝑦 ൌ  205°𝐶. Figures 
(Fig. 12a,b) show the MPC response of column distillation 
for a step change.  
       The result shows that MPC control the temperature in 
the presence of set point changes and maintains the 
controlled variable around the set point with a smaller rise 
time during the transient response. Above figures (Fig.12a 
& Fig.12b) are responses without disturbances of distillation 
column model, figure (Fig.12a) depict the controlled Top 
Temperature and (Fig.13b) illustrates the controlled Bottom 
Temperature. Therefore, the figures (Fig.12c & Fig.12d) 
give the manipulate variables (𝑢ଵ, 𝑢ଶ) respectively. 

If there are no disturbance in operating condition, the 
control system is to achieve the steady state of product 
quality that the purity of the distillate product 𝑥஽ and the 
impurity of the bottoms product 𝑥஻ at the sired values.  
      MPC control action indicates that when the temperature 
at the outlet of the distillation column goes above the 
reference temperature, the control input is decreased to 
take output temperature to the reference temperature level. 
Also, when the output temperature goes below the 
reference temperature, the control input rises again to take 
the output temperature to the reference temperature level. 
In addition, it is observed that the controller starts to take 
action before any changes in the reference signal, which is 
an important feature of MPC controller. 
 
Case_02: System affected by a measurement 
disturbance      at level= 1%. 
In this case study, step response model with a disturbance 
at level 1% of the magnitude. The responses of controlled 
variables, the distillate composition (𝑿𝑫) and bottom 
composition (𝑿𝑩) of binary distillation column, are shown in 
Figure (Fig.13). 
 
Case_03: System affected by a measurement 
disturbance at level= 5%. 
In this scenario, we apply a disturbance input at level of 5% 
on the measurement (error tolerated for sensors in 
industrial instrumentation), the response of the system is 
illustrated in figure (Fig.14). 
 
Disturbance Analysis 
        It is well known that distillation processes are in 
general very sensitive to disturbance effects, thus a 
successful controller should provide good disturbances 
rejection capabilities. But even the performance of well-
tuned controller can be deteriorated in presence of 
significant disturbances. To examine the controller 
performance different disturbance tests were performed.  
The Fig.13 shows the controlled temperatures when the set 
points is affected by measurement noise at 1%. The MPC 
controller eliminate this disturbance and manages to 
maintain the outputs inside their respective control zones.  
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Fig.12: System response for varying reference values of Flow Reflux and Set Temp Reboiler under Model Predictive Controller, (a) Top 
Temperature response, (b) Bot Temperature response, (c) Control signal input for Top Temperature, (d) Control signal input for Bot 
Temperature. 

 
Fig.13: System response for varying reference values of Flow Reflux and Set Temp Reboiler under Model Predictive Controller with 
addition of 1% of noise, (a) Top Temperature response, (b) Bot Temperature response, (c) Control signal input for Top Temperature, (d) 
Control signal input for Bot Temperature. 
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Fig.14: System response for varying reference values of Flow Reflux and Set Temp Reboiler under Model Predictive Controller with 
addition of 5% of noise, (a) Top Temperature response, (b) Bot Temperature response, (c) Control signal input for Top Temperature, (d) 
Control signal input for Bot Temperature. 
 
Assuming that the measurement disturbance is at 5%, the 
case of the Fig.14, we can see easily that the MPC 
controller is able to respond to this disturbance and control 
the temperature of the column without a large oscillation 
and offset while simultaneously neglecting the effects of 
unmeasured disturbances. A large number of simulations 
were performed in this work to check the robustness of the 
MPC controller against different scenarios. Simulation 
results demonstrate that the MPC controller achieves a 
suitable control performance for disturbance rejection. 
 
Conclusion 
In this work a binary distillation column model was identified 
from data using Matlab Identification system Toolbox, and it 
was validated by residual cross correlation test, the model 
was the subject of MPC control simulation study using 
MATLAB software. The distillation column model was 
estimated using Identification Toolbox System based on 
Black Box Modeling Philosophy, data was collected from 
real binary distillation column installed in the crude 
distillation unit of SKIKDA refinery. The MPC controller 
implemented to the binary distillation column model 
considering two manipulated variables namely Reflux and 
Boil up flow used to maintain two temperatures at their set 
points under the operation constraints and in the presence 
of disturbances. The simulation result shows good tracking 
capacity, best constraints support and good disturbance 
rejection ability. MPC controller has been found to be very 
satisfactory for the binary distillation column control. 
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