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Streszczenie. Artykuł przedstawia koncepcję i analizy dla hybrydowego algorytmu ewolucyjno-fajerwerkowego zastosowanego do wielokryterialnej 
optymalizacji pracy systemów elektroenergetycznych. W analizach uwzględniono przyjęto kryteria optymalizacyjne dotyczące minimalizacji strat 
technicznych w analizowanych strukturach elektroenergetycznych, minimalizacji odchyleń napięcia, minimalizacji przeciążeń urządzeń sieciowych 
oraz optymalizacji rozpływów mocy w systemach. Zaprezentowane w artykule rezultaty przedstawiają możliwości zaproponowanego hybrydowego 
algorytmu zilustrowane i opisane na przykładzie wybranych zadań optymalizacyjnych. (Zastosowanie hybrydowego wielokryterialnego 
algorytmu ewolucyjno-fajerwerkowego do optymalizacji pracy systemów energetycznych). 
 
Abstract. This paper presents the concept and analyses for a hybrid evolutionary-fireworks algorithm applied to multi-criteria optimisation of power 
system operation. The analyses consider optimization criteria related to minimizing technical losses in the analysed power system structures, voltage 
deviation minimization, reduction of network equipment overloads, and optimal power flow in the systems. The results presented in this paper 
demonstrate the capabilities of the proposed hybrid algorithm, illustrated and described through selected optimization tasks. 
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Introduction 
This paper presents the application of a hybrid multi-

criteria algorithm that combines evolutionary methods with 
the concept of a fireworks algorithm. The article is a 
continuation and extension of the analyzes presented in the 
author's previous article, which contains the results of 
calculations using a hybrid evolutionary-fireworks algorithm 
for the approach integrating criteria.  

The effectiveness of the computational approach used 
was analysed by comparing the results obtained with 
selected heuristic algorithms for optimizing power flow 
problems [12, 14, 15] in selected power system structures 
(contained in the Matpower package files). The analyses 
were carried out using Matlab and the Matpower package 
[2, 5, 9]. The evolutionary algorithm performs calculations of 
so-called simulated evolution, while the fireworks algorithm 
belongs to the group of swarm algorithms and utilizes 
descriptions of changes in the positions (locations in space) 
of sparks [5, 8, 10]. The group of evolutionary algorithms for 
the optimization in the Pareto meaning are designated as 
MOEA (Multi Object Evolutionary Algorithm) [1, 3, 4]. NSGA 
(Non-Dominated Sorting Genetic Algorithm) and improved 
versions NSGA II and NSGA III is popular method which 
differs from the basic genetic algorithm in the selection 
method. In the first step of NSGA, all non-dominated 
specimen are identified in the population and are given the 
same high value [6, 16]. Subsequently, in order to maintain 
the diversity, the pre-determined artificial values of 
adaptation of non-dominated specimen are subjected to the 
division function. In another step, new non-dominated 
solutions are identified in the remaining population [7, 11]. 

The paper outlines concepts and analyses for the hybrid 
multi-criteria evolutionary-fireworks algorithm used to 
determine Pareto-optimal solutions for the problem under 
analysis, the Pareto front, and solutions in the vicinity of the 
Pareto front. An original contribution of the paper is the 
concept of an evolutionary-fireworks algorithm applied to 
power flow optimization. Furthermore, the latter part of the 
paper extends the proposed hybrid algorithm concept to 
multi-criteria optimization of power system operation. In the 
multi-criteria optimization calculations, additional criteria 
were considered, including minimizing technical losses in 
the network, minimizing voltage deviations at network 
nodes, and minimizing network equipment overloads. This 
combination of algorithms has also been used in previous 
work [13], where evolutionary optimization of material flow 

in the injection moulding process for automotive 
components was presented. The effectiveness of the 
integrated approach of the fireworks and evolutionary 
algorithms for optimizing material flow in production 
processes was also analysed [13]. The focus was on the 
author's proposal for a hybrid approach. This paper 
proposes a new alternative concept for combining these 
algorithms, primarily involving the incorporation of 
recombination operators based on simulating secondary 
sparks, performed according to modified fireworks algorithm 
procedures. The hybrid algorithm's application for the 
optimization of power systems operation is also presented.  

 
Calculation methodology used 

In the paper results of multi-criteria optimization analyses, 
considering a set of objective functions, were presented. 
The parameters of the evolutionary algorithm include 
population size and the intensity of recombination 
operators’ usage. The appropriate choice of scaling and 
selection methods is also an important issue. In contrast, for 
the fireworks algorithm, the main parameters of the 
algorithm include the number of primary sparks, the 
amplitude of fireworks and the intensity of secondary 
sparks. The proposed hybrid algorithm is based on the 
assumption that the evolutionary algorithm is the main 
algorithm that processes the positions of points 
(corresponding to the location of the so-called primary 
sparks). On the other hand, the modified fireworks algorithm 
(incorporated into the crossover operator procedures) 
performs calculations for points generated around the 
primary spark, which corresponds to the generation of new 
variants of solutions (locations of secondary sparks) located 
near the primary point. In addition, a repository was 
included in the calculation, in which above-average 
solutions from both primary and secondary sparks are 
stored. The recombination operators of the evolutionary 
algorithm used transfer partial solutions (concerning the 
locations of primary sparks, the amplitude of fireworks, and 
the intensity of secondary sparks) between the configured 
new solutions.  

The proposed hybrid approach makes it possible to 
increase the search intensity of the solution space for a 
single iteration, achieved at the cost of increased 
computational effort, but ultimately resulting in improved 
algorithm efficiency. Variant solutions include encoded 
locations of primary sparks, the amplitude of explosions, 
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and the intensity of secondary sparks. This information was 
encoded in real-number vectors. The locations of primary 
spark and secondary sparks corresponded to various 
solution values for the analysed task. In the solution coding 
method used, the decision variables, once decoded, 
determined the levels of generated power at each source 
when the balancing node was taken into account. The 
coding method used also takes into account the limited 
ranges of values of the individual decision variables. 

Operators that create new solution variants used in 
evolutionary algorithms have their limitations. The use of 
the proposed hybrid approach allows for the creation of 
more diverse solution variants by incorporating the 
fireworks algorithm procedures into the process of creating 
new solutions. In the applied hybrid approach, this algorithm 
involves processing a small sub-populations of solutions 
(created by a modified crossover operator). The developed 
crossover operator concept is based on the following steps: 
 creation of solution variants (with a sub-population size 

generated from the range 3÷8) using the concept of 
secondary sparks, 

 evaluation of sub-populations of solutions and inclusion 
of the best variants into the main population. 

The applied recombination operators modify and create 
new solution variants that primarily describe the locations of 
primary and secondary sparks, as well as the values of 
secondary spark amplitudes. Determining the locations of 
fireworks involved calculating the values of decision 
variables and objective function values.  

An extension of the proposed hybrid approach (the 
evolutionary-fireworks algorithm) for multi-criteria 
optimization was developed and analysed.  This version of 
the algorithm is also based on the assumption that the 
evolutionary algorithm processes the main population of 
solutions, and the modified firework algorithm is activated 
when creating new solutions through recombination 
(crossover and mutation) operators. The proposed 
modifications to the NSGA II algorithm are indicated  
on the block diagram Fig.1 and Fig 2.   

 

 
 

Fig 1. Block diagram of the modified NSGA II algorithm 

 
 

Fig 2. Iteration of the modified NSGA II algorithm (using the 
modfied fireworks algorithm) 

 
where: Pt – initial population; Qt1 – the offspring made in the 
crossing and mutation process done on Pt; Qt2 - based on 
Qt1 made in modfied  fireworks algorithm, Qt3 - best 
solutions from Qt1 (dominance criterion), Qt4 - best solutions 
from Qt2, Rt – a population consists   of   Pt, Qt3 and Qt4; F1 
÷ Fn – Pareto sets created by sorting and ranking the 
members of population R1, where F1 contains the best 
population’s members, F2 to Fn. 

 
Once a new solution variant has been created by the 

recombination operators, a sub-population of solutions 
corresponding to the secondary sparks used by the 
fireworks algorithm is created. These solutions are subject 
to evaluation (the degree of dominance is determined) and 
then some of these solutions (Pareto-optimal solutions) are 
included in the main population. During the evaluation, the 
degree of dominance of individual variants relative to other 
solution variants is determined. It is also possible to find 
solutions (slightly dominated) located close to the Pareto 
front. It is possible to apply the described hybrid approach 
in combination with the NSGA II algorithm (available in the 
"gamultiobj" function of the Matlab program) or the NSGA III 
algorithm.  

The application of the described approach aims to 
determine the Pareto front for the analysed problems, 
improve the efficiency of recognizing the entire Pareto front, 
and achieve an even distribution of points on the Pareto 
front. New solutions generated by the modified point 
fireworks algorithm can replace the dominated (closest 
located) solutions in the created new population. 

The proposed modification can also be used, for example, 
in the NSGA III algorithm. The hybrid approach provides 
additional possibilities for creating diverse solution variants 
compared to the classical versions of recombination 
operators. Modifications in the NSGA II algorithm involved 
making changes to the procedures of operators 
("crossover" and "mutation") offered by the "gamultiobj" 
function. Below are the formulas for the criteria functions for 
the optimization criteria listed above. 
f1(x) – the criterion function for the criterion under 
consideration can be represented as the summation of cost 
functions for individual generation nodes: 
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where: Pg, Qg – vectors of values of generated active and 
reactive power, Q – vector of values of voltage shift angles, 
Vm – vector of values of nodal voltages, 
 
f2(x) – determines the minimization of power losses in the 
analyzed MV grid: 
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whereas: Ri – resistance of the i-th section of the line after 
the upgrade,  
 
f3(x) – the criterion function relates to the minimization of 
voltage deviations at the nodes of the analyzed field MV 
grid, 
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whereas: Ui – voltage at the i-th node, Uo – expected 
voltage, Un – rated voltage, n – number of nodes,  

 
The paper also contains a description of results regarding 

the application of the described concept of a hybrid 
combination of selected versions of evolutionary and 
fireworks algorithms for multi-criteria optimization. The 
described hybrid approach can be implemented in the 
NSGA II algorithm through modifications of selected 
procedures of the NSGA II algorithm (available in the 
"gamultiobj" function). The modification involved: generating 
new points (solution variants) around the points generated 
by the main algorithm.  Modification involved adding and 
modifying an external repository to store points on the 
Pareto front (or in its immediate vicinity according to the 
degree of dominance).  

Results of computational analyses 
Network structures stored as Matpower package files 

were analysed (“case 57”, and “case 118”). Structure 57 is 
presented in [2], and Figure 3 shows a power nets with 118 
nodes. In the initial stage of the analyses, calculations were 
performed for the objective function, where the criterion was 
the optimisation of power flows. In this part of the analysis, 
the results of calculations were compared using three 
algorithms: 
 multi-criteria evolutionary algorithm (NSGA II), 
 multi-criteria hybrid algorithm evolutionary-fireworks, 
 multi-criteria particle swarm optimization (MOPSO).    
The results presented in the paper were obtained using 

randomly generated initial populations of solutions, which 
were then processed by the (pre-selected) heuristic 
algorithms. Calculations using the basic evolutionary 
algorithm were performed with the following parameters: a 
population size ranging from 300 to 500 elements, a 
crossover operator probability of 0.8, and a mutation 
operator probability of 0.07. Calculations using the hybrid 
evolutionary algorithm were performed with the same 
parameters (as with the basic algorithm). The results 
obtained in the hybrid approach represent an improvement 
in algorithm efficiency, primarily due to the fact that the 
hybrid algorithm creates additional solutions, and the 
crossover operators have a broader range of capabilities for 
generating diverse solution structures compared to classical 
recombination operators. 
 

 
Fig. 3. Diagram of the IEEE 118-bus test system 
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The analyses were carried out for two power system 
structures stored in Matpower package files, namely: 
“case57” and “case118.  The results obtained through this 
method were compared with the results obtained using the 
three algorithms. In particular, such a comparison is 
presented in Figures 4÷15, where these portions of the 
calculation process are shown in detail, illustrating the 
comparison of algorithm results.  

In the graphs, it can be observed that the hybrid algorithm 
evolutionary-fireworks is the faster in finding the better 
solutions. In the analysed cases, the hybrid algorithm 
exhibits better efficiency compared to the basic evolutionary 
algorithm. For the structure containing 57 nodes, the 
minimum value of the objective function (energy production 
costs) is 41737 $/hr.  

Figures 4÷12 show the course of optimization calculations 
using selected algorithms for two criteria minimizing energy 
production costs, minimizing technical losses in the network 
(taking into account active and reactive power losses). The 
following algorithm parameters were used for calculations: 
the number of population elements from 200 to 300, the 
number of iterations from 50÷250 or 350. For the NSGA II 
evolutionary algorithm, the intensity of the crossover 
operator was assumed to be 0.8, and the intensity of the 
mutation operator was 0.07.  

For the hybrid evolutionary-fireworks algorithm, the 
intensity of secondary sparks was assumed to be from 3÷6, 
and the amplitude of secondary flares was from 0.03 to 
0.05. Numerous computational processes were carried out 
using the pre-selected algorithms for optimizing the 
operation of various power system structures.  

 

 
 

Fig. 4. Comparison of curves illustrating the course of calculations 
with selected algorithms for 50 iterations (NSGA II - red points, 
hybrid evolutionary-fireworks algorithm - blue points) for “case 57” 

 

 
 

Fig. 5. Comparison of curves illustrating the course of calculations 
with selected algorithms for 150 iterations (NSGA II - red points, 

hybrid evolutionary-fireworks algorithm - blue points) for “case 57” 

In Figures 4 - 12, a comparative search process for 
solutions using two algorithms is presented. The following 
notations were introduced in the comparison graphs: NSGA 
II - red points, and the modified NSGA II algorithm with 
application algorithm evolutionary-fireworks - blue points. 

Table 1 provides a comparison of the objective function 
values for selected solution variants located in the middle of 
the discovered Pareto front. Calculations of indicators were 
also carried out to evaluate the position of the obtained 
Pareto fronts in relation to the assumed real Pareto front (or 
the nearest to the real one). Measures regarding the even 
distribution of points on the Pareto front can also be 
introduced for the evaluation of the created solutions.  
 
Table 1. Values the objective function for selected solution variants 
located in the Pareto front ) for “case 57” 
 

No. f1(x) - Energy production 
costs [$/hr] 

f2(x) - Technical 
losses [MVA] 

1 41735,7 85,56 

2 44722,9 61,15 

3 41759,9 80,01 

4 42403,3 64,93 

5 44830,7 61,14 

 

 
 

Fig. 6. Comparison of curves illustrating the course of calculations 
with selected algorithms for 250 iterations (NSGA II - red points, 
hybrid evolutionary-fireworks algorithm - blue points) for “case 57” 
 

Indicators  the distance between Pareto fronts obtained by 
selected algorithms were counted (algorithm NSGA II, 
hybrid evolutionary-fireworks algorithm) for power net “case 
57". Generational Distance (GD) determines how far (on 
average) the found front is from the actual front [16]: 
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Nknown is the size of the found front, and di determines 

the distance of each solution from the found solution front 
from the nearest solution from the actual solution front [16]. 
The lower the value of this metric, the closer the found front 
is to the real front. Obtained value of indicator for Pareto 
fronts for fig. 6: GD = 1.8961. Figure 7 shows a comparison 
of the results for the basic version of the NSGA II algorithm 
(for the number of iterations 350) and for the hybrid 
algorithm (for the number of iterations 250). A larger 
number of iterations of the basic NSGA algorithm gives a 
very similar effect to the result obtained with the hybrid 
algorithm with a smaller number of iterations. 
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Fig. 7. Comparison of curves illustrating the course of calculations 
with selected algorithms for 350 iterations (NSGA II - red points, 

hybrid evolutionary-fireworks algorithm - blue points) for “case 57” 
 

Figures 8 and 9 show the Pareto fronts obtained by the 
classical NSGA II algorithm and its modified version (hybrid 
evolutionary-fireworks algorithm) for optimization according 
to the adopted criteria for a 118-node structure. These 
figures show the differences in the results obtained by the 
classic NSGA II algorithm and its modified version using the 
evolution-fireworks algorithm. 

 

 
 

Fig. 8. Comparison of curves illustrating the course of calculations 
with selected algorithms for 50 iterations (NSGA II - red points, 

hybrid evolutionary-fireworks algorithm - blue points) for “case 118” 
 
By comparing the obtained results, it can be observed that 

the hybrid multi-criteria evolutionary algorithm achieves 
better results than the basic evolutionary algorithm. 
Changes in the diversity of the population during the 
computational processes performed by the evolutionary 
algorithms (basic and hybrid) were also analysed. Changes 
in the diversity of the population during the computational 
processes performed by the evolutionary algorithms (basic 
and hybrid) were also analysed.  

In particular, the histograms of solution evaluations at 
various stages of the optimization process were examined. 
After analysing the histograms of population evaluations, it 
was observed that the hybrid algorithm maintains greater 
population diversity compared to the basic evolutionary 
algorithm. This manifested itself in a more diverse 
population and better values of indicators determining the 
differences between the best elements of the population 
and the others. The proposed hybrid fireworks-evolutionary 
algorithm requires a greater number of single computations 
of the objective function per iteration, as it involves the 
evaluation of a sub-population of solution variants created 
by the modified firework algorithm.  

 

 
 

Fig. 9. Comparison of curves illustrating the course of calculations 
with selected algorithms for 300 iterations (NSGA II - red points, 

hybrid evolutionary-fireworks algorithm - blue points) for “case 118” 
 

 
 

Fig. 10. Comparison of curves illustrating the course of calculations 
with selected algorithms for 50 iterations (MOPSO - red points, 

hybrid evolutionary-fireworks algorithm - blue points) for “case 57” 
 
Analyses were also conducted for the application of the 

hybrid approach proposed in the paper using the MOPSO 
algorithm. In such a case, an improvement in results 
compared to the MOPSO algorithm was also obtained, as 
presented in Figures 10, 11 and 12. 

 

 
 

Fig. 11. Comparison of curves illustrating the course of calculations 
with selected algorithms for 150 iterations (MOPSO - red points, 
hybrid evolutionary-fireworks algorithm - blue points) for “case 57” 

 
Analysing the results, it can be concluded that the 

analyses pertained to solving the problems analysed in the 
paper using the following algorithms: the NSGA II algorithm 
and its hybrid version, as well as the MSPO algorithm. 
Indicators  the distance between Pareto fronts obtained by 
selected algorithms were counted (algorithm MOPSO, 
hybrid evolutionary-fireworks algorithm) for power net “case 
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57". Obtained value of indicator for Pareto fronts for fig. 12: 
Generational Distance (GD) = 2.1725. 
 

 
 

Fig. 12. Comparison of curves illustrating the course of calculations 
with selected algorithms for 250 iterations (MOPSO - red points, 
hybrid evolutionary-fireworks algorithm - blue points) for “case 57” 

 
Figures 13÷14 show the course of optimization calculations 
for three criteria for the "case 57" network structure. The 
values of objective functions and decision variables for 
selected solution variants from the set of Pareto-optimal 
solutions are presented in Table 2. 

The description of the algorithm parameters, such as the 
number of iterations and population size, is included in the 
description of the charts. The results presented in the chart 
(fig. 13) were obtained with a population size  of 200 
elements.  
 
Table 2. Values the objective function for selected solution variants 
located in the Pareto front ) for power net “case 118” 
 

No. f1(x) - Energy 
production 
costs [$/hr] 

f2(x) - 
Technical 

losses [MVA] 

f3(x) - Voltage 
deviations 

[j.w] 
1 41735,57 85,73 0,0649 

2 44540,53 61,19 0,0638 

3 46933,92 77,77 0,0634 

4 43555,10 65,76 0,0635 

5 44878,42 68,31 0,0634 

 

 
 

Fig. 13. Comparison of curves illustrating the course of calculations 
with selected algorithms for 50 iterations (NSGA II – black points, 
hybrid evolutionary-fireworks algorithm - blue points) for “case 57” 
 
The results presented in the chart (fig. 14) were obtained 

with a population size of 300 elements for basic 
evolutionary algorithm (NSGA II) and the number of 
iterations equal to 500, and for population size of 200 

elements for hybrid evolutionary-fireworks algorithm for the 
number of iterations equal to 200. 

 

   
 

Fig. 14. Comparison of curves illustrating the course of calculations 
with selected algorithms for 200 iterations (NSGA II - red points, 

hybrid evolutionary-fireworks algorithm - blue points)  for “case 57” 
 
Figure 15 shows the course of optimization calculations 

for three optimization criteria (minimizing technical losses  
in the network, minimizing voltage deviations at network 
nodes, and minimizing energy production costs) for the 
"case 118" net structure. 

 

 
 

Fig. 15. Comparison of curves illustrating the course of calculations 
with selected algorithms for 300 iterations (NSGA II - red black, 

hybrid evolutionary-fireworks algorithm - blue points)  for “case 118” 
 
Based on the analyses performed, it can be observed that 

the proposed modifications and extensions of the NSGA II 
evolutionary algorithm (available in the "gamultiobj" function 
of Matlab) allow for an improvement in the efficiency of this 
algorithm. This improvement is in the graphs illustrating the 
obtained sets of Pareto-optimal solutions. The results of the 
conducted analyses are also presented in tables containing 
the values of the objective functions for selected solution 
variants of the problem analysed in the paper. 

 
Conclusions 

The paper presents the results of analyses on the 
application of modified versions of evolutionary algorithms 
in multi-criteria optimisation, and the capabilities of the 
proposed hybrid approach (combined evolutionary and 
fireworks algorithms) for finding a set of Pareto-optimal 
solutions. This paper presents analyses related to multi-
criteria optimization using selected evolutionary algorithms 
and their proposed modifications.  

The results obtained indicate a positive impact of the 
proposed modifications (in the form of a hybrid approach) of 
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evolutionary algorithm on their effectiveness. In the paper, 
the results of multi-criteria optimization analyses, 
considering a set of objective functions (minimizing energy 
production costs, minimizing technical losses in the 
network, minimizing voltage deviations at network nodes), 
were presented. Analyses  were carried out using three 
selected heuristic algorithms: the particle swarm algorithm 
and the basic and hybrid versions of the evolutionary 
algorithm. 

The analyses carried out led to the conclusion that the 
proposed hybrid algorithm offers additional capabilities 
compared to the basic version of the evolutionary algorithm. 
The proposed hybrid algorithm can be extended to include 
further criteria and determine Pareto-optimal solutions. The 
analysis showed the possibility of applying the proposed 
hybrid algorithm in its basic version, but it can also be 
adapted for multi-criteria computations to determine a set of 
Pareto-optimal solutions and the Pareto front.  
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