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Digital Energy Path for Planning and Operation of the 
sustainable grid, products and society – project objectives and 

selected preliminary results in Polish conditions 
  
 

Abstract. This paper presents the objectives and selected preliminary results of the international research project entitled Digital Energy Path for 
Planning and Operation of sustainable grid, products and society (DIEGO), planned for years 2022 – 2024. The article presents selected results of 
the analysis of the electric power system of the considered industrial plant, where the demonstration installation will be built, in terms of electric 
power and energy demand and generation. A statistical analysis of measurement data from the industrial plant was carried out. The article also 
presents the results of forecasts of demand and generation of electric power and energy using various methods and prediction models. The paper 
ends with a summary and indication of directions for further research planned to be carried out as part of the DIEGO project. 
 
Streszczenie. W niniejszym artykule przedstawiono cele i wybrane wstępne wyniki międzynarodowego projektu badawczego pt. Cyfrowa Ścieżka 
dla Planowania i Eksploatacji Zrównoważonych Sieci Elektroenergetycznych, Produktów i Społeczności (DIEGO), zaplanowanego do realizacji w 
latach 2022 – 2024. W artykule przedstawiono wybrane wyniki analizy układu elektroenergetycznego rozważanego zakładu przemysłowego, na 
terenie którego zbudowana zostanie instalacja demonstracyjna, w zakresie zapotrzebowania i wytwarzania mocy i energii elektrycznej. 
Przeprowadzona została analiza statystyczna danych pomiarowych z zakładu przemysłowego. W artykule zaprezentowano również wyniki prognoz 
zapotrzebowania i generacji mocy i energii elektrycznej z zastosowaniem różnych metod i modeli predykcyjnych. Artykuł zakończony został 
podsumowaniem oraz wskazaniem kierunków dalszych badań zaplanowanych do realizacji w ramach projektu DIEGO. (Cyfrowa Ścieżka Energii 
dla Planowania i Eksploatacji zrównoważonej sieci, produktów i społeczeństwa – cele projektu i wybrane wstępne wyniki w warunkach 
polskich) 
 
Keywords: planning and operation of digital solutions, sustainable power grid, electricity forecasting, statistical analysis of data. 
Słowa kluczowe: planowanie i funkcjonowanie rozwiązań cyfrowych, zrównoważona sieć elektroenergetyczna, prognozowanie mocy i 
energii elektrycznej, analiza statystyczna danych. 
 
 

Introduction 
 International research project entitled “Digital Energy 
Path for Planning and Operation of sustainable grid, 
products, and society” (acronym DIEGO) is realized under 
the “Digital Transformation for Green Energy Transition” 
(EnerDigit) initiative, funded by the European Union’s 
Horizon 2020 research and innovation programme [1]. It is 
expected that digital transformation will have an essential 
impact on energy system design in the future. Digitalization 
can bring many various, positive effects in the domain of 
energy systems. Therefore, EnerDigit promotes applied 
research and development, piloting, and demonstration in 
the field of digitalisation of energy systems and networks. It 
calls for the development of scalable, adaptable, and 
replicable solutions, applicable from local through 
interregional and up to global levels, making effective use of 
the opportunities offered by digitalization to drive the energy 
transformation [1]. 
 In the initial phase of the project, research concerning 
analysis of the considered industrial plant’s electric power 
system was carried out. The structure of the existing 
internal electrical grid and installation was analysed and 
preparation of a project for its modernization aimed at 
installing appropriate measuring devices was done. The 
collected measurement data were used to determine the 
profiles of the industrial plant’s demand for power and 
electricity, the operating logic of the energy storage facility 
and the energy generation profile in the photovoltaic system 
installed at the plant. The description of the electrical grid 
and installation’s structure in industrial plant and the 
analysis of measurement data allowed to determine limits of 
input data’s usability for the algorithms controlling the 
demonstration installation, which are to be developed in the 
subsequent phases of the project. 
 The structure of the paper is as follows. 
First project objectives are defined, and then demonstration 
installation in Poland has been characterized along with the 

analysis of the existing electrical grid and installation of the 
industrial plant. Next selected results of statistical analysis 
of measurement data and forecasting of demand and 
generation of electric power were presented. At the end of 
the paper summary and final conclusions have been 
placed. 
 

Project objectives 
 The main objective of the DIEGO project is the 
development and testing of consistent methods and 
applications for a digital integrated energy system and 
components crosslinking of processes and infrastructures to 
provide reliable multigrid and sustainable industrial 
products. With DIEGO project planning and operation digital 
energy solutions, an optimized local energy symbiosis and 
an increase in system resiliency, reliability, and 
maintenance management should be guaranteed [2]. 
  To ensure a reliable, continuous and safe supply of 
electricity in the future, the development of new sustainable 
and clean energy sources is gaining importance [2]. The 
use of information and communications technology (ICT) 
and digital applications enable to monitor, control and 
protect power systems. It also enables services offering that 
will be significant in grids with a large share of renewable 
sources and thus smooth the transition from conventional to 
sustainable smart grids. The ICT will increase the 
complexity of such integrated systems and necessitate new 
methods and tools for planning, operation and optimal 
integration of advanced digital solutions in energy systems 
domain. The DIEGO project aims to develop and test 
methods, solutions and tools for planning and operating 
components and local energy systems in the environments 
of manufacturing enterprises, industrial parks, public 
campuses, and living test laboratories. 
 The DIEGO digital solutions, consisting of concepts of 
data models, interfaces, and pilot applications, will be 
implemented and operated in 5 demonstration installations 
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in different locations (one location each in Austria, Israel, 
and Poland as two locations in Germany) to test several 
use cases and scenarios of digital energy path for planning 
and operation of the sustainable grid, products, and society. 
In Poland the real test environment will be the coupling of 
energy (RES generation, load, storage) and electrical 
components in the AC grid of industrial enterprise for 
sustainable and energy-efficient manufacturing [2]. 
 

Demonstration installation in Poland 
A short description of the electric power arrangement of 

the demonstration installation concerning an industrial 
enterprise located in Poland is presented below. 

The considered factory (see Fig. 1) is supplied from 
existing overhead line of 15 kV via MV/LV substation 
located on its premises. In the mentioned substation a 
transformer with a rated power of 630 kVA is installed. This 
transformer supplies the main LV switchgear with five LV 
circuits going out from it. Four bays are used to power the 
main switchgears in particular buildings of the enterprise, 
and one bay is a connection to the switchgear of a 
photovoltaic installation (PV system) located on the factory 
premises. 
 

 
 

Fig. 1. The connection diagram concerning an internal electric 
power grid in the considered industrial enterprise. 
 

An electricity storage facility is also located on the 
premises of the industrial enterprise. The storage system 
includes two inverter systems and two lithium-ion batteries. 
One of the inverters together with the batteries serves as an 
electricity storage system, and the second one together with 
the batteries creates an UPS system for needs of the 
industrial enterprise. 

The production specialties of the considered industrial 
enterprise are listed below: 
 production of the steel car accessories, 
 laser processing of metal elements, 
 production of home and garden accessories and 

advertising gadgets. 
The production of door sills, rear bumper protectors and 

other car accessories made of steel and dedicated to 
particular kinds of cars is a main goal in the first above 
production category. In turn, laser cutting of the flat metal 
sheets, pipes, and various profiles is a subject of the 
second-mentioned category. 

Different types of electricity loads are located in 4 
buildings of the factory. These are: 
 mainly lighting and plug-in sockets circuits supplying 

typical administrative and office equipment in Building 

no. 1; 
 industrial loads in Building no. 2 with the highest power 

demand in the factory. These are four teams of laser 
cutters and circuits supplying additional loads of lasers. 
Fiber lasers of 6 kW, 10 kW, and 3 kW rated powers are 
applied. The maximum power demand of the largest unit 
is equal to 54 kVA; 

 circuits of electrical installation in Building no. 3 which 
serves as a warehouse; 

 circuits of electrical installation in Building no. 4. Rooms 
subleased to various tenants are located in the building. 
Besides lighting and plug-in socket circuits supplying 
typical office equipment, there are also electric heaters. 

 Computerized numerical control (CNC) machines work 
24 hours a day and night and 7 days a week in Building no. 
2 in the factory. 
 
Internal electric power system analysis 

As part of the DIEGO project, analyses of the power 
system located on the premises of the industrial plant will 
be carried out, in particular: 
 analysis of electric power arrangement existing in the 

enterprise and technological processes realized there, 
 exploration of an accessed measurement data on 

received power and electrical energy consumption as 
well as generation of power and electrical energy in the 
factory, 

 modeling of selected electrical energy loads and 
technological processes realized in the factory in the 
scope of electric power demand, 

 development of the real-time electrical energy balancing 
method on the level of the considered factory as well as 
the method which allows for setting proper operation 
regimes of electrical energy source, electrical energy 
storage system, and controllable electric power loads 
existing in the factory, 

 development of preventive measures and methods 
concerning for example reducing the peak loads at the 
level of the analyzed factory as well as improvement of 
the energy efficiency of selected technological 
processes realized in the factory in the scope of 
electrical energy. 
As it was mentioned, one of the tasks expected to be 

realized in the scope of the DIEGO project is the 
development of practicable preventive measures (methods) 
for reducing peak electric loads at the level of the 
considered factory.  
For reducing peak electric loads, it is theoretically possible 
to apply the following preventive measures (methods): 
 reduction of the total demand for electric power and 

energy at the level of the considered factory by limitation 
of the level of power and energy received by power 
loads exploited in the factory; 

 reduction of the total demand for electric power and 
energy at the level of the considered factory by shifting 
the power consumption periods during the day by power 
loads exploited in the factory; 

 increase of level of electric power and energy produced 
by a generation source located on the premises of the 
factory; 

 applying appropriate operating regimes of the electric 
energy storage system for reducing peak electric loads 
at the level of the considered factory. 
Were all the mentioned preventive measures used, the 

peak electric loads would decrease. Taking into account 
existing operating conditions and technological processes in 
the factory, applying appropriate operating regimes 
(charging, discharging) of the existing electric energy 
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storage system will be a subject of analysis in the further 
part of the paper. 

Fig. 2, 3, and 4 show daily characteristics of an active 
energy generated in PV installation (black line) and daily 
profiles of residual active energy (grey line) in 15-minute 
intervals in the considered factory for three selected days 
on April 2023: Wednesday, Saturday, and Sunday. Also, 
relevant characteristics of the mentioned energies on the 
days preceding the mentioned days have been shown, in 
order to show the periods of both days during which it would 
be possible to charge and discharge the energy storage 
system. A residual active energy is defined as a difference 
between an active energy generated by the PV installation 
and the total hypothetical consumption of an active energy 
in the considered factory. A negative sign of the residual 
active energy means that the active energy generated by 
the PV installation is lower than the total hypothetical 
consumption of an active energy at the level of the factory. 
 

 
 

Fig. 2. Daily characteristics of an active energy generated in PV 
installation and a daily profile of residual active energy in 15-minute 
intervals in the considered factory on selected working day - 
Wednesday 
 

 
 

Fig. 3. Daily characteristics of an active energy generated in PV 
installation and a daily profile of residual active energy in 15-minute 
intervals in the considered factory on selected Saturday 
 

 
 

Fig. 4. Daily characteristics of active energy generated in PV 
installation and a daily profile of residual active energy in 15-minute 
intervals in the considered factory on selected Sunday 
 

Analyzing the characteristics (15-minute averages) 
shown in Fig. 2, 3, and 4, the following observations can be 
made: 
 in the evening hours on April 18th and at night on April 
19th, it would be possible to charge the electrical energy 
storage system with active energy received from the DSO 
grid. This would slightly increase the absolute value of the 
residual active energy in the mentioned hours and, in 
consequence, it would also slightly increase the total 
hypothetical consumption of active energy at the level of the 
considered factory during these hours. Simultaneously, this 
would allow to discharge of the energy storage system 
during the peak period of the absolute value of the residual 
active energy on April 19th (between 7 a.m. and 12 p.m.). 
This, in turn, would decrease the peak absolute value of the 
residual active energy and, in consequence, it would limit 
the peak consumption of the active energy at the level of 
the factory on April 19th; 
 on April 22nd (Saturday) and on April 23rd (Sunday) too 
high absolute values of the residual active energy and, 
consequently, very high consumption of the active energy at 
the level of the considered factory were not observed. 
Periods, in which the absolute value of the active energy 
generated by the PV installation was greater than the 
absolute value of the residual active energy could be used 
to charge the energy storage system. This would slightly 
increase the absolute value of the residual active energy in 
these periods and, in consequence, also increase the total 
hypothetical consumption at the level of the factory. The 
active energy accumulated in this way could be utilized in 
the process of discharging the energy storage system 
during the period of the peak consumption of the active 
energy on the next day, i.e. April 24th. 

As shown, for each of these days it is possible to define 
the appropriate period for charging and discharging the 
electric energy storage system. In this way, the energy 
storage system can be used to limit the peak daily demand 
for active energy at the level of the factory in the considered 
15-minute intervals. 

The choice of relevant parameters of an electric energy 
storage system is an important issue in this context. 
Information from literature sources (e.g. [3]), shows that 
these parameters are closely related to the function that the 
energy storage system is to perform. 

From the consumers point of view, the most important 
issues regarding the possible utilization of energy storage 
systems are the possibility of shifting electrical power and 
energy during the day (flattening the peak load – 
decreasing the peak power,  reducing the costs of charges 
for power), the possibility of using them as emergency 
supply sources, and the possibility of using electric vehicles 
as mobile energy storage systems in the aspect of local and 
global balancing of electric power grids. 

In turn, regarding the possible use of energy storage 
systems by RES owners, the most important question here 
is the possibility of shifting electrical power and energy 
during the day, i.e. the possibility of storing surplus energy 
generated in RES and utilization of the energy in periods of 
its shortage, i.e. usually during peak load times. 

Each of the above-mentioned functionalities will require 
appropriate dimensioning of an electrical energy storage 
system. This issue has been described e.g. in [3 - 6]. 
 
Statistical analysis of data 
 For statistical analysis two types of data are available: 
demand for power/electricity in an industrial plant and 
generation of power/electricity in a PV system. Due to the 
lack of an appropriate amount of historical data from the PV 
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installation located on the premises of the plant PV located 
nearby the industrial plant was used.  
 During the initial research, data preprocessing, 
statistical analysis of data from the PV system, and 
preliminary selection of explanatory variables for predictive 
models were conducted. Data resolution is 1 minute but it 
was converted to 15 minute values for forecasting 
purposes. Preprocessing of "raw" data was executed as the 
first step: identification and correction of incorrect or missing 
data and time change problems. The data were normalized 
for anonymization to relative units (1 relative unit is equal to 
the maximum value from time series). Pearson linear 
autocorrelation coefficients for analysed time series were 
calculated – choice of the most important lagged values of 
the explained variable. Figure 5 shows results of linear 
Pearson autocorrelation up to 2 days backward. All 
correlation coefficients are statistically significant (5% level 
of significance). The analysis revealed a very strong daily 
periodicity and high repeatability of the examined process. 
The values of the linear Pearson correlation coefficient for a 
lag of exactly 1 day (96 lags) are 0.770, which is greater 
than the correlation coefficient from lag 6 (lag 6 has a 
correlation coefficient of 0.788, while lag 7 has a value of 
0.7526). For lags that are multiples of 96, the correlation 
coefficient decreases very slowly, and for a lag of exactly 10 
days, it is 0.672. Using the last 6 lagged values and several 
lags that are multiples of 96 (exactly the same periods in 
previous days) as potential input data for predictive models 
is justified based on the correlation magnitude.  

 
Fig. 5. Autocorrelation function (ACF) of the analysed time series 
(192 lagged 15-minute values). 
 

Verification of daily periodicity and seasonality in 
available electricity generation time series was executed as 
the next task. The aim of the task was to determine 
additional explanatory variables for forecasting models 
(daily periodicity and seasonality markers). An example of 
similar research is described in the article [7,8]. Figure 6 
shows the seasonality of electricity generation in the PV 
system (the sum of energy generation in each month of 
2022). The sum of energy generation in June 2022 was 
almost 44 times higher than in the month of December 
2022. The proposed input data includes the marker of daily 
variability (hour) and the marker of seasonality (month). 
Additionally, a marker for the time of day was suggested 
(value +1 until noon, and value -1 after noon) to sensitize 
the model to the direction (trend) of changes in generation 
values (increasing/decreasing). 

Statistical analysis of electricity generation time series in 
order to find the most valuable explanatory variables for 
linear and non-linear prediction models was executed as 
the next task. Applied methods include analyses of Pearson 
linear correlation coefficients and explanatory variables 
cross-correlation matrix. Additionally, a weighted averaging 

of the time series of electricity generation values was 
performed. This activity should reduce the random 
component of this time series. The selected past values of 
such transformed time series may be a valuable set of input 
data. A full set of proposed input data is as follows: month, 
hour, rising solar irradiance marker, declining solar 
irradiance marker, smoothed generation in period T-1, 
generation and solar irradiance in periods: T-1, T-2, T-3, T-
4, T-5, T-6, T-96 and T-192, air temperature in periods: T-1, 
T-2 and wind speed in period T-1.  
 

 
Fig. 6. Seasonality of electricity generation in the PV system (total 
generation). 
 

 Figure 7 shows a scatter plot between electricity 
generation in period T (output data) and solar irradiance in 
period T-1. For both dispersion diagrams the data in the XY 
coordinate system is fitted with a curve using a weighted 
least squares smoothing procedure with distance (the 
influence of points decreases with their horizontal distance 
from a given point on the curve). In this case, the shape of 
the fitting curve indicates a slight degree of nonlinearity 
between the output data and input data. Especially for the 
largest values, the fitting curve exhibits a slightly nonlinear 
form. 

 
Fig. 7. Relationship between electricity generation in period T and 
solar irradiance in period T-1.  
 

Fig. 8 shows the scatter plot of the generation of 
electrical energy values and the values of solar air 
temperature. The data in the XY coordinate system is fitted 
with a curve using a weighted least squares smoothing 
procedure with distance (the influence of points decreases 
with their horizontal distance from a given point on the 
curve). A slight nonlinearity is observed on the fitting curve 
for the highest values of electricity generation (the growth 
dynamics of generation decrease with increase in air 
temperature). This effect is likely due to the phenomenon of 
decreased efficiency of photovoltaic panels under very high 
air temperatures. An interesting observation is the dynamic 
increase in the magnitude of generation (lowest values) 
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evident on the fitting curve as the temperature rises from 
approximately 7 degrees Celsius to around 15 degrees 
Celsius. 

 
Fig. 8. The scatter plot of the generation of electrical energy values 
and the values of air temperature.  
 

Sensitivity analyses/importance rating by Multi-Layer 
Perceptron (MLP) artificial neural network, random forest, 
gradient-boosted decision trees, and backward stepwise 
regression was executed. Based on the conducted tests of 
input data importance, a ranking of importance was 
developed, incorporating results from all methods. Based 
on the balancing ranking of input data importance, it can be 
concluded that the most important input data are electricity 
generation and solar irradiance from the last few 15-minute 
periods preceding the forecast period. Additionally, 
smoothed generation in period T-1 is also among the most 
important input data. On the other hand, the least valuable 
input data are wind speed and the seasonality marker 
(month). 
  
Forecasting of energy generation and electric energy 
demand 
 The next point of project research will be the selection 
and development of forecasting models for power and 
electricity demand. During the initial electricity generation 
forecasting energy generation of a photovoltaic farm with a 
15-minute forecast horizon, different methods were 
checked. The forecasts were generated using data from the 
year 2022. From original time series, covering full days, 
samples between sunrise and sunset were extracted and 
treated as valid data. The purpose of this transformation 
was to simplify the problem for predictive models (results 
from the period between sunset and sunrise have no 
practical application, and typically forecast values are 
zeroed as part of post-processing). In order to divide the 
dataset into training and validations subsets, full dataset 
was divided into 4 climatic seasons. Spring lasted from 
2022-03-01 01 to 2022-06-01 00, summer from 2022-06-01 
01 to 2022-09-01 00, fall from 2022-09-01 01 to 2022-12-01 
00, and the rest of the year 2022 was treated as winter. 
One last week of each season was labelled as test data, 
while the rest of the data constituted a combined 
training/validation dataset. For this combined dataset one 
last week of each season was taken as validation data. In 
total data was divided into training/validation and test with 
83.35-16.65% proportion, where validation data constituted 
20.67% samples in training/validation dataset. In order to 
have a broader view of the quality of individual forecasting 
models, four evaluation criteria are used, including nRMSE, 
nAPE, nAPEmax and nMBE. The nRMSE error was 
adopted as the most important measure due to the greater 
sensitivity to large partial errors. Sets of input data selected 
for forecasting methods are following: 

 SET1(24 inputs) - all available/created input data 
including: endogenous variables, exogenous variables, 
seasonality markers, daily variability markers, and process 
trend markers (increasing/decreasing), 
 SET2(12 inputs) - 12 highest ranked input data (from 24 
input data) based on the final balancing ranking of the 
importance of input data, 
 SET3(13 inputs) - only endogenous variables and 
seasonality markers, daily variability markers, and process 
trend markers (increasing/decreasing), 
 SET4(9 inputs) - only endogenous variables without 
markers,  
 SET5(1 input) – generation  in period T-1.  
 The following Machine Learning (ML) techniques were 
applied: Long Short-Term Memory (LSTM) neural network, 
Multi-Layer Perceptron (MLP) neural network, Random 
Forest (RF), and Gradient Boosted Decision Trees 
(XGBoost type). Methods from these categories are 
described in articles [9, 10, 11]. For each ML technique, the 
search for the best hyperparameters was conducted in 5 
variants (using 5 different sets of input data).  
 Table 1 presents the forecasting results using different 
ML models for the test range. The best results for each 
error metric have been highlighted in bold in the table. The 
number of tested models to find the right hyperparameters 
(criterion - minimum nRMSE error on the validation set) was 
as follows for each machine learning technique: 498 (MLP), 
240 (LSTM), 500 (XGBoost), and 192 (RF).  
 The best RF model has following structure and 
hyperparameters: the available number of input data: 24 
(SET3), the number of randomly chosen input data for each 
decision tree individually is 19 (80%), the number of 
decision trees used for generating forecasts (determined 
based on the observation of quality changes, i.e., prediction 
errors) is 300, the minimum number of samples in a node 
subject to splitting is 100, the maximum number of levels in 
the decision trees is 10, the maximum number of nodes in 
the decision tree is 100 and minimum samples per leaf - the 
number of samples in a node after a split is 10. The best RF 
model achieved an nRMSE error that was 10.56% lower 
compared to the reference model (naive model) (see Table 
1). The nMBE error was also lower than in the naive model. 
Among the 4 sets of input data, SET1 is the best for the 
best RF model. Therefore, RF model differs from other 
machine learning techniques, where SET3 is the best set of 
input data. The utilization of markers (SET3) for RF model 
compared to the variant with the same input data but 
without markers (SET4) improved the result by 0.94%, 
indicating that the application of markers is fully justified. 
The number of randomly chosen input data for each 
decision tree individually even 80% is always better than 
60% for RF models. 
Figure 9 depicts the relationship between the best RF 
model residuals and the magnitude of energy generation. 
The data in the XY coordinate system is fitted with a curve 
using a weighted least squares smoothing procedure with 
distance. A slight nonlinearity is observed on the fitting 
curve. A slight tendency for underestimations (forecast 
values are lower than actual values) is clearly visible for 
high energy generation values, and there is also a tendency 
for overestimations (forecast values are higher than actual 
values) for low energy generation values. Fig. 10 shows 
actual electricity generation values and forecasts by the 
best RF model for three consecutive days in the spring 
month of 2022 (May 19, 20, and 21). 
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Table 1. Summary of prediction results for different ML models and the naive model.   
Forecasting model Input data variant nRMSE (p.u.) nMAE (p.u.) nAPEmax (%) nMBE (p.u.) 

RF SET1 0.021232 0.010263 18.7999 -0.00071 
RF SET3 0.021315 0.010145 19.8930 -0.00044 

XGBoost SET3 0.021361 0.009863 19.7055 -0.00052 
RF SET2 0.021468 0.010438 20.0389 -0.00065 

MLP SET3 0.021495 0.009953 19.3563 -0.00060 
RF SET4 0.021519 0.010399 19.9537 -0.00065 

LSTM SET3 0.021538 0.010164 18.5626 -0.00044 
MLP SET1 0.021601 0.010069 18.5677 -0.001095 

XGBoost SET1 0.021642 0.010895 18.2109 -0.00146 
XGBoost SET4 0.021712 0.010279 19.7528 -0.00063 

LSTM SET4 0.021953 0.010080 19.6159 -0.00011 
XGBoost SET2 0.021958 0.010451 19.4267 -0.00090 

MLP SET2 0.021996 0.010277 19.8986 -0.000335 
MLP SET4 0.022059 0.009930 20.0266 -0.00026 
MLP SET5 0.022682 0.010810 20.0872 -0.00047 

XGBoost SET5 0.022682 0.011475 19.8671 -0.00138 
LSTM SET2 0.022912 0.011803 18.7428 0.00115 
LSTM SET5 0.023042 0.010852 20.0897 -0.00005 
LSTM SET1 0.023591 0.013196 20.2756 -0.00253 
Naive SET5 0.023739 0.009884 20.2918 0.00035 

 
  

 
 
Figure 9. The relationship between the best RF model residuals 
and the magnitude of energy generation (test range) 
 
Among the analyzed ML models, the most advantageous 
one turned out to be the RF model (ranked 1st on input data 
SET1, 2nd on input data SET3). The second-best ML model 
in the ranking is XGBoost. The least favorable is the LSTM 
model, although the differences in nRMSE error values 
between the best RF model and the best LSTM model are 
negligible. The best RF model (SET1) has an nRMSE error 
that is 1.4% lower than the best LSTM model (SET3). 

 
 
Figure 10. Actual electricity generation values and forecasts by the 
best RF model for three consecutive days in the spring month of 
2022 (May 19, 20, and 21).  
 

 In the subsequent stages of the project, proprietary 
ensemble and hybrid models will be proposed, potentially 
further reducing the nRMSE error in forecasting energy 
generation in the photovoltaic system. Within the project, 
ML single models as well as hybrid and ensemble models 
will also be developed for forecasting electricity demand in 
the industrial facility.  
 
Summary and conclusions 
 The results from the research conducted so far and 
presented in this article will be used to develop (in the 
industrial plant being under consideration): 
 countermeasures for limiting electrical load peaks and 

limiting starting currents of selected power loads, 
 predictive models determining the expected efficiency of 

selected technological processes, 
 real-time electricity balancing method and algorithm, 
 methods and algorithm for determining appropriate 

operating regimes of sources, storage facilities and 
controllable loads of electrical power. 

 The developed methods and algorithms will be 
integrated with the SCADA system used to monitor and 
manage the demonstration installation. 
 The implementation of DIEGO international research 
project will contribute to increasing the energy efficiency of 
the electrical installation of the industrial plant under 
consideration and will increase the degree of integration 
and cooperation of renewable energy sources, energy 
storage units and selected electricity loads. The methods 
and algorithms developed during the project may 
significantly contribute to reducing the carbon footprint of 
the company, where the demonstration installation will be 
established, which in the era of rising energy prices is one 
of priority areas of interest of the European Union 
authorities. 
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