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An Automated Framework to Segment and Classify Gliomas 
using Hybrid Shuffled Complex Evolution with Convolutional 

Neural Network 
 
 

Abstract. The infiltrative nature and rapid progression of gliomas have made them the most prevalent as well as aggressive type of brain tumour. In 
the clinical routine, it is a difficult task to distinguish tumour boundaries from the healthy cells. For brain tumour diagnoses as well as evaluations of 
the intra operative treatment response, there is extensive utilisation of the Magnetic Resonance Imaging (MRI). With segmentation, infected regions 
of the brain tissue can be extracted from MRIs. The tumour region’s segmentation is a critical task for cancer diagnosis, treatment as well as 
treatment outcome assessment. The significant architecture named the Convolutional Neural Network (CNN) in deep learning is used. The CNN has 
shown outstanding improvement in the objects’ recognition as well as classification. It has much efficiency in a wide range of problems which deal 
with machine learning as well as computer vision. Akin to other techniques of deep learning, much difficulty is involved in training the CNN. In this 
work, proposed a novel meta-heuristic based algorithms have been used for optimizing CNN using Ant Colony Optimization (ACO), hybrid Shuffled 
Complex Evolution (SCE) with ACO and hybrid SCE with Particle Swarm Optimization (PSO) algorithm. The results show that the proposed method 
produces better results than existing methods. 
 
Streszczenie. Naciekowy charakter i szybki postęp glejaków uczyniły je najczęstszym i najbardziej agresywnym rodzajem nowotworu mózgu. W 
praktyce klinicznej odróżnienie granic guza od zdrowych komórek jest trudnym zadaniem. W diagnostyce guza mózgu, a także ocenie 
śródoperacyjnej odpowiedzi na leczenie szeroko wykorzystuje się obrazowanie metodą rezonansu magnetycznego (MRI). Dzięki segmentacji 
zakażone obszary tkanki mózgowej można wyodrębnić z rezonansu magnetycznego. Segmentacja regionu nowotworowego jest kluczowym 
zadaniem w diagnostyce nowotworu, jego leczeniu, a także ocenie wyników leczenia. W głębokim uczeniu się wykorzystywana jest znacząca 
architektura zwana konwolucyjną siecią neuronową (CNN). CNN wykazało wyjątkową poprawę w zakresie rozpoznawania i klasyfikacji obiektów. Ma 
dużą skuteczność w szerokim zakresie problemów związanych z uczeniem maszynowym i wizją komputerową. Podobnie jak w przypadku innych 
technik głębokiego uczenia się, szkolenie CNN wiąże się z wieloma trudnościami. W tej pracy zaproponowane nowatorskie algorytmy oparte na 
metaheurystyce zostały wykorzystane do optymalizacji CNN przy użyciu algorytmu Ant Colony Optimization (ACO), hybrydowej Shuffled Complex 
Evolution (SCE) z ACO i hybrydowego SCE z algorytmem Particle Swarm Optimization (PSO). Wyniki pokazują, że proponowana metoda daje 
lepsze wyniki niż metody istniejące. (Zautomatyzowany system segmentacji i klasyfikacji glejaków przy użyciu hybrydowej, tasowanej 
ewolucji złożonej z konwolucyjną siecią neuronową) 
 
Keywords: Glioma Detection and Segmentation, Magnetic Resonance Imaging (MRI), Gabor Filter, Ant Colony Optimization (ACO), 
Shuffle Complex Evolution (SCE),Particle Swarm Optimization and Convolutional Neural Network. 
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Introduction 
Brain tumours are the dominant causes of cancer 

patient deaths, particularly in children and young people. A 
report by the American Cancer Society found that, in 2019, 
the USA had 23,820 new cases of brain cancer. The two 
major brain tumour types are primary and secondary brain 
tumour. While the primary type originates in the brain cells, 
the secondary type develops the spread of malignant cells 
from other parts to the brain. A commonly occurring primary 
tumours named Glioma which will affect the brain’s glial 
cells and also will invade the tissues which surround it. The 
most aggressive as well as common brain tumour type, 
High-Grade Glioma (HGG) or Glioblastoma (GBM),has a 
median survival rate of 1-2 years only. On the other hand, 
Low-Grade Glioma (LGG) like astrocytoma has a slower-
growth and has a slightly longer time for survival. 
Chemotherapy and radiotherapy are some of the recent 
treatment methods which are utilised for the destruction of 
tumour cells which cannot be physically resected or for 
slowing their growth. Hence, for numerous brain tumours, 
neurosurgery is the preliminary and, in certain cases, the 
sole course of treatment. Despite that, the brain’s nature as 
well as structure has produced the most cumbersome 
practice conditions for modern surgical treatment. 
Furthermore, it is quite challenging for neurosurgeons to 
differentiate tumour tissue from usual parenchyma only 
based on visual level [1]. 

In clinical practice, there is extensively utilisation of the 
Magnetic Resonance Imaging (MRI) for non-invasive 
treatment as well as gliomas follow ups. For the purpose of 
tumour evaluations, there is utilisation of conventional MRI 

modalities includingT1weighted (T1), enhanced T1-
weighted (T1-Gd) with post-contrast, T2weighted modality, 
and T2-Fluid-Attenuated based Inversion Recovery (FLAIR) 
image dataset. These Magnetic Resonance Imaging 
technique produced images are able to offer information 
about brain tumour’s anatomical characteristics. Moreover, 
additional microvascular, micro structural, and biochemical 
information is offered by the advanced MRI modalities such 
as diffusion tensor-weighted, diffusion-weighted, perfusion 
weighted, MR spectroscopic imaging, and so on [2]. 

In image processing, the crucial task of image 
segmentation is done during the processing phase inclusive 
of low-level images. Partition of homogenous part involved 
in this task. While brain tumour image segmentation 
approach is refer for this partition, it will also divide the brain 
tumour region area. Morphological operations technique 
and edge detection are some of the various applied 
methods for image segmentation. It was proved from 
numerous earlier image segmentation research that higher 
accuracy outcomes could be offered by the region-based 
techniques. Nevertheless, the automated brain tumour 
segmentation was investigated only by few researchers. 
Watershed edge detection methods followed by image 
region growth, thresholding, image splitting, merging and 
analytical morphology are the various applied image 
segmentation methods used for segmenting the region area 
[3]. 

While there have been recent developments in fully 
automatic as well as semi-automatic algorithms for brain 
tumour segmentation, this task continues to have numerous 
opening challenges primarily due to the brain tumours’ high 
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variation in location, regularity, shape, size and 
heterogeneous appearance (for example, texture, contrast 
uptake and image uniformity). In addition, there is the 
inclusion of other potentially complex issues in brain tumour 
segmentation such as:(1) the Blood-Brain Barrier (BBB) 
remains integral with LGG cases then the affected part that 
often not applicable contrast enhancement; hence, LGG’s 
regions may turn out to be blurry or invisible even though 
the FLAIR sequence offers comparison among the normal 
and the brain tumour such that there is delineation of the 
lesion’s full extent; (2) contrastingly, in HGG cases, leakage 
of the gadolinium across the disrupted BBB leads to its 
entry to the brain tumour’s extracellular space and result in 
hyper intensity on the T1-weighted images. Thus, there will 
be easy delineation of the necrosis and active tumour 
regions. However, the HGG often exhibits unclear and 
irregular boundaries which may also involve discontinuities 
because of the tumour’s aggressive infiltration. This in turn, 
may cause problems and may lead to poor tumour 
segmentation; (3) multimodal MRI data is taken into 
account to detect the visibility of numerous tumour sub-
regions as well as  types of tumours. Nevertheless, it is 
quite challenging for co-registration across multiple MRI 
sequences, particularly when these sequences’ acquisition 
have been done in diverse spatial resolutions; and (4) the 
general acquisition of generic clinical MRI images is done 
with much lower inter-slice resolution as well as higher in-
plane resolution so as to yield a balance between sufficient 
image slices for covering the entire tumour volume with 
good quality cross-sectional views as well as for providing 
reduced times for scanning. However, this may create the 
signal-to-noise ratio of in sufficient level as well as effects of 
asymmetrical half volume have an impact on the accuracy 
of the final segmentation [4]. 

Structure tensor eigen values, local histograms, and 
image textures are the various MRI features which have 
been adopted in the studies associated with brain tumour 
segmentation. For pattern recognition in tumour 
segmentation studies, the frequently used ML methods are 
the Random Forest (RF) and the Support Vector Machines 
(SVMs). Deep-learning-based techniques as well as 
methods enjoy much popularity in brain tumour 
segmentation research due to its outstanding performance 
in the fields of image analysis like object detection, 
semantic segmentation as well as image classification. DL 
methods are able to accomplish highly advanced 
performance for automatic brain tumour segmentation  
through multi-model MRI usage. Being a powerful technique 
for image recognition as well as prediction, the 
Convolutional Neural Network (CNN) gets primarily utilised 
for brain tumour segmentation, classification as well as 
prediction of patient survival times. Stacked De-Noising 
Auto-encoders and Convolutional Restricted Boltzman 
Machine are some of the other deep-learning-based 
techniques utilised for tumour segmentation, classification 
as well as prediction. Amongst the various deep learning 
techniques as well as methods, CNNs have the best 
performance for image segmentation, classification as well 
as prediction [5]. 

Nowadays, certain metaheuristic algorithms have been 
employed for the optimisation of deep learning, in particular, 
the CNN. Metaheuristic is a powerful resolution method for 
challenging optimisation problems, and also has been 
extensively utilised in almost all areas of research such 
asscience, engineering, and industrial application. Typically, 
this method operates on three key objectives, that is, the 
resolution of huge problems, quicker problem resolution, 
and the detection of robust algorithms. Furthermore, these 
methods are easily designable, flexible as well as relative 

ease for applicability. Majority of the meta-heuristics 
algorithms are nature-inspired, and are dependent on 
various principles of phenomena in ethology, physics, and 
biology [6]. PSO, ACO and Firefly Algorithm (FA) are a few 
examples of metaheuristic algorithms inspired by 
ethological phenomena. While Simulated Annealing (SA), 
Micro-canonical Annealing (MA), and Threshold Accepting 
method (TA) are examples of metaheuristic algorithms 
inspired by physical phenomena, Genetic Algorithm (GA), 
Differential Evolution (DE) and Evolution Strategy (ES)are a 
few examples of metaheuristic algorithms inspired by 
biological phenomena. 

In this work, proposes the hybrid SCE-ACO and SCE-
PSO algorithm for gliomas detection-based MRI. The 
organization of this paper as follows. Section 2describes the 
related works in literature. Section 3discussesproposed 
methods applied in the work. Section 4 discusses 
experimental results and section 5 concludes the proposed 
work. 

  
RELATED WORKS 

Mzoughi et al., [7] had proposed an effective as well as 
multi-scale three-dimensional CNN to categorize the glioma 
tumour into low grade gliomas as well as high-grade 
gliomas through utilisation of complete volumetric MRI 
sequence. The proposed architecture would work via small 
kernels to combine both local and global contextual details 
to reduce weights with the basis of a layer in the network. In 
order to overcome the data heterogeneity, proposal was 
given for a pre-processing technique which had 
dependence on intensity normalisation as well as the MRI 
data’s adaptive contrast enhancement. Augmentation 
technique for data was utilised for effective training of the 
deep 3D-network. With this work, the impact of the 
proposed pre-processing as well as data augmentation on 
the classification accuracy could be examined. 

Narmatha et al., [8] had devised for the purposes of 
medical image segmentation as well as classification, the 
Fuzzy Brain-Storm Optimisation (FBSO) algorithm. This 
algorithm would combine the fuzzy and Brain-Storm 
Optimisation (BSO) techniques. While the BSO was 
primarily focused on the cluster centres and offered these 
centres the highest priority; akin to just like any other swarm 
algorithms, it would still get trapped in the local optima. 
While the fuzzy would carry out various iterations in order to 
offer an optimal network structure, the BSO would provide 
better outcomes over other techniques. Dataset’s utilisation 
with the (BRATs 2018), FBSO was found to be less efficient 
where significantly decreased optimisation algorithm’s 
segmentation duration with precision of94.77%,accuracy 
of93.85%,sensitivityof  95.77%, and 95.42%F1 score. 
Hedyehzadeh et al. [9] had put forward an automated 
non-invasive estimation technique for the brain tumour’s 
grade with MRI utilisation. Upon completion of 
pre-processing, the tumour region from the post-processed 
images then extracted using Fuzzy based segmentation. 
Extracting the features obtained Matlab software was 
utilised to extract texture, local inarypattern with fractal 
based attributes. Afterwards, the Grasshopper Optimisation 
Algorithm (GOA) was used to optimise the parameters of 
three distinct methods of classification: Random Forest 
(RF), K-Nearest Neighbour (KNN), and Support Vector 
Machine (SVM). Eventually, a performance comparison was 
done on the three applied classifiers prior to and after the 
optimisation. When compared with the other classification 
methods, it was evident that the Random Forest provides 
better results with 99.09%accuracy. 

Saravanan & Thirumurugan [10] utilised optimisation 
and machine learning techniques to offer high levels of 
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tumour region segmentation. Initially, edge detection is 
applied for identifying the edge pixels. Then, this edge 
detected pixels were applied with the contrast adaptive 
histogram equalisation method to attain an enhanced brain 
image. Afterwards, there was the Ridgelet transform’s 
application on this image to obtain the Ridgelet multi-
resolution coefficients. Moreover, the Ridgelet transformed 
coefficients were utilised for the derivation of features, 
which were then optimised with the Principal Component 
Analysis (PCA) method. Eventually, the fuzzy system-based 
classifier was employed for the classification of these 
optimised features into non-Glioma or Glioma brain images. 
In comparison with existing classification approach resulted 
the 97.6%sensitivity, 98.56% 
specificity,98.73%accuracy,98.85% precision,98.11false 
positive rate, and 98.185% false negative rate. 

Kumar et al., [11] had combined Whale Optimisation 
algorithms based differential evolution method for the 
presentation image segmentation technique for brain 
tumour detection. Moreover, for validation of the proposed 
hybrid algorithm’s efficiency, between-class variance as 
well as T sall is entropy functions were used for its 
comparison with certain previously well-known 
metaheuristic algorithms. For all entropy-based 
segmentation done on brain MRIs, this proposed hybrid 
algorithm for image segmentation accomplished much 
superior results compared to other algorithms. 

Devanathan & Venkatachalapathy [12] proposed 
thresholding with multilevel based segmentation technique 
and classification approach to diagnosis the brain tumour. 
At first, the proposed model would enhance the image 
quality through the execution of pre-processing in three 
levels. Then, image segmentation was done by the 
thresholding integration of artificial bee colony algorithm. 
Later, there was a feasible feature vector set’s extraction 
through utilisation of the feature extractor technique of gray 
level co-occurrence matrix. In the end, the SVM was used 
to carry out the classification procedure. With the 
benchmark Kaggle dataset, a set of simulations were 
executed. Then, the obtained experimental outcomes were 
investigated under different aspects. It was demonstrated 
from the experimental outcomes that the presented model 
showed an effective diagnostic performance with 
97.90%sensitivity, 97.91%specificity, and 97.56%accuracy. 

Anaraki et al., [13] had given the proposal for a 
technique which was on the basis of CNNs as well as the 
Genetic Algorithm (GA) for non-invasive classification of the 
diverse Glioma grade by utilising MRI. The existing 
selection methods for deep neural network architecture are 
often on the basis of either trial and error or adopting of 
predefined common architectures. The proposed CNN’s 
structure through GA utilisation. In addition, there is 
utilisation of an ensemble algorithm on the best GA involved 
model to minimise prediction error’s variance. It was found 
from a single case study that the three distinct Glioma 
grades’ classification has an accuracy of 90.9%. 
 
METHODOLOGY 

The process of feature extraction had resulted in an 
object’s description with regards to the measurable 
parameters which represent edits relevant attributes, and 
also could be utilised for classification through setting the 
object to the class. There is utilisation of image features for 
the segmentation of colour and texture features, even 
though the nature of a separate feature which texture image 
utilises level gray scale whilst colour extracting all the 
information on the colour space [14]. In 1946, Gabor had 
introduced one of the most renowned texture descriptors, 
the Gabor filter. This filter analysed the frequency of 

considered image domain for feature extraction. Gabor filter 
was a Gaussian function that underwent modulation by the 
complex sinusoidal of frequency as well as orientation. This 
filter operates the domains of spatial and frequency. It could 
be in a diverse more dimensions. As these filters could offer 
the finer distinctions of the diverse textures, they were more 
desirable. The following steps are involved in the analysis of 
the Gabor filter: get the image’s Fourier transform, its 
multiplication with Gaussian function centred by numerous 
frequencies by inverse fast fourier transform results. Each 
Gaussian’s selection of the central frequency was critical in 
ensuring that all image frequencies had been accounted for 
[15]. This section will provide discussions on the SCE, the 
ACO-CNN, the SCE-ACO, and the SCE-PSO methods. 
 
3.1 Shuffled Complex Evolution (SCE) Algorithm 

The utilized technique Shuffled Complex Evolution-
University of Arizona(SCE-UA) is the general-purpose 
global optimisation method had been proposed for 
inference of conventional best parameter fixed as well as 
parameters are underlying with posterior supplies enclosed 
with individual optimisation run. The objective of the 
classical SCE-UA algorithm involved to detect the best 
parameters within the instance space. First, the SCE-UA 
selects the samples randomly in whole points which are 
distributed across the bounded parameter space. It will 
utilise adaptation layer and Downhill Simplex search 
method for the continuous evolution population towards 
good decisions in the instance space while continuously 
surrendering livelihood of boundaries with lesser posterior 
distribution. Various evolutionary search algorithms [16] are 
used to observed this genetic drift in which the population’s 
members will drift to individual location in the features 

space with the mode of ( | )p x f


). 
The SCE algorithm’s preliminary proposal was as a method 
of optimisation for addressing the continuous problems. 
Nevertheless, numerous problems of optimisation like 
features election, take place within a features discrete 
space, which has qualitative dissimilarities between 
variables as well as between levels. For extension of the 
SCE algorithm’s applicability, there was a binary SCE’s 
development for the resolution of discrete problems. Each 
complex’s position would get encoded by a binary string. 
Each bit will represent a feature; where a non-selected 
feature’s representation is by the bit value 0, while a 
selected feature’s representation is by the bit value 1. Each 
position would be a subset of features. 
 
The below steps present the algorithm of SCE-UA [17]: 
 

Step 1 Initialisation: Initialise the selection procedure 
parameters as follows: q which indicates the number of 
complexes, np which indicates each complex’s number of 
points, s = np x q, which indicates the size of the population, 
npq which indicates each sub-complex’s number of points, 
nspl which indicates the number of evolution steps allowed 
for each complex prior to complex shuffling, minq which 
indicates required complexes with minimum number when 
the number of complexity is permitted for decreasing with 
progression search, maxn which indicates the maximum 
number of trials allowed prior to the optimisation’s 
termination, k indicates the number of shuffling loops in 
which the criterion value must modify by pc prior to the 
optimisation’s termination, and pc represents the percent of 
the criterion value should modify in kth shuffling loops. 
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Step 2: performance Evaluation:  
There is initialisation of an individual population, where 

 for i=1,...,six


, with randomly generated numbers in 
accordance with a distribution that is uniform for the n 
dimensional feature space. The selection of these first 
individual numbers are inside the user represented bounds, 

[ , ]L U
j jx x

, in which

L
jx

will denote the lower boundary 

constraint while

U
jx

will denote the higher region constraint 

for the values 1, ..., ,  j n x F


  , wherein s will denote 
actual size of the population in Equation (1),that is, 
 

(1)  
( - )    1,..., ;  1,...,U L L

i j j jx rnd x x x i s j n


   
   

Then, assess the performance with regards to the objective 
function (OF) value. 
Step 3: Sorting the values: Sorting the s considered points 
in the OF’s ascending order in such a way in which first 
point will indicate and having lowest OF where minimisation 
issue. 
 

Step 4: Partitioning the points: 
 There will be division of the population into q complexes, 

1 2, ,..., qC C C , where every complex will constitute np points 
in such a way that the first complex has every q(j−1) + 1 
ranked point, the second complex has  every q(j−1) + 
2ranked point of D, etc., wherein j=1, 2,. . .,np. 
 

Step 5: Evolution: Take nspl evolution steps for each 
complex’s independent evolution. The 2 types of evolution 
including reflection  based evolution and contraction based 
evolution which follows the Downhill Simplex method’s 
adaptation procedures. 
 

Step 6: Combination of different complexes and 
population modification: There is combination of the 
evolved complexes’ points to form a single population of 
samples; sort this population in the criterion value’s 
ascending order; in accordance with the specified 
procedure in Step 4, re-partition means shuffle the different 
population of samples into diving the q complexes. 
 

Step 7:  Criterion #1:  when the number of training trials 
are greater than tmax. Then, criterion number does not 
have an improvement in pc×100% in k loops, come to a 
halt; otherwise, proceed as earlier. 
 

Step 8: Criterion #2: When minq< q, discarding complex 
which has low rank points, then, set the q values is q−1 and 
s is np×q, and shift return to step 4. When minq is q, shift 
backwards to Step 4. 
 

3.2 ACO-CNN 
This work as given the proposal for the latest Swarm 

Intelligence (SI) based Neural Architecture Search (NAS) 
method. This work will initially concentrate on one of the 
renowned deep neural architectures, the CNN. The 
proposed method employs ACO for the discovery of new 
CNN architectures. For the NAS, the SI is used because of 
its various feasible traits such as ability to share as well as 
combine knowledge, scalability, decentralisation, fault 
tolerance, etc., which would  support the management of 
NAS problems. To be more specific, certain distinct 
characteristics of the ACO makes it a natural fit for the field 
of NAS: ACO is best-suited for the resolution of discrete 
problems that have graphical representations, and also can 

quickly adapt to the dynamic environment (that is, varying 
graph). Yet another key factor in its utilisation lies in the fact 
that there has not been much exploration of the majority of 
the SI methods within the context of NAS [18]. 
Akin to the Progressive Neural Architecture Search (PNAS), 
the Deep Swarm searches for novel architectures in the 
complexity’s ascending order. During the NAS task’s 
commencement, the deep swarm will create the internal 
graph had input node only. Later, there is generation of a 
constrained number of ants. Then, 1 at a time, all ants are 
kept in the input node. After this, individual ant will choose 
an available node in the CNN’s subsequent layer as per Ant 
Colony System (ACS)choice rule given by the below 
Equation (2): 
 

(2)  

( )
arg max{[ ( , )].[ ( , )] },   0 (exp ).

,                                (  exp ),
ku J r

r u r u if q q loitation
s

S otherwise biased loration

 


  


  

Here, ( , )r u will denote amount of pheromone on the edge 

which extends from node r to node u while ( , )r u will 
denote the associated heuristic value of the edge which 
extends from node r to node u. Moreover, Jk(r) will denote 
an available node set which can visit from node r. Number q 
will be number randomly having uniform distribution over 

[0….1]. parameters 0 (0,1]q 
 and (0, inf)  will 

control the greediness of algorithm as well as heuristic 
information’s relative importance. In the end, S will denote a 
random variable that was chosen as per the probabilistic 
distribution defined in the below Equation (3): 
 

(3)  

( )

[ ( , )].[ ( , )]
,   ( ).

[ ( , )].[ ( , )]( , )

0,                                    .
k

k

k u J r

r s r s
if s J r

r u r up r s

otherwise





 
 




 






    
Upon a node’s selection, the system will check whether 

these nodes existed already in the graph in depth selection. 
When selection for new node that does not exist in the 
graph, this will get appended with the graph as the previous 
nodes(that is, node where ant was prior to its selection) 
neighbour such that the succeeding ants are able to 
perform the pheromone information’s exploitation. After a 
particular node is picked by an ant, it will also carry out the 
selection rule which was defined by Equation (2) as well as 
Equation (3) for selecting that node’s attributes(that is, 
kernel size, and filter size). Upon completion of the 
selection, there will be the node’s addition to the path of the 
ant. Upon arrival of an ant at the current value or maximum 
allowed depth, this path will get converted forwarded to 
neural network structure. This architecture will then undergo 
assessment. In addition, upon completion of a walk, the ant 
will carry out ACS local pheromone update (as per Equation 
(4)) for every edge has utilized further: 
 

(4)     0( , ) (1 ). ( , ) .r s r s      
  

Here, parameter  will denote the pheromone decay factor 

while parameter 0 will denote the initial pheromone 
number. local update rule is processed with this number the 
pheromone values will decay in such a way that other ants 
will get driven to explore alternate paths. Upon completion 
of the evaluation by all the ants, there is identification of the 
best performance ant the ant which was able to find the 
structure having the better accuracy. Later, the ant will carry 
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out ACS global pheromone updated to increase the 
pheromone values for the best path’s identified edges as 
per the below Equation (5): 
 

(5)  ( , ) (1 ). ( , ) . ( , )r s r s r s         
  
Here,  

(6)  

,   ( , ) - - .
( , )

0,                                  
gbC if r s global best tour

r s
otherwise




  
  

In this equation, parameter  will have a range of (0; 1) 

and controls the evaporation of the pheromone. gbC
will 

denote global best tour’s that means the highest model 
accuracy cost. Upon increasing current maximum allowed 
depth of the graph. There will be generation of a new ant 
population. Till the maximum depth (which is user-specified) 
is reached, there is this cycle’s repetition. 
The following are some of the various fascinating outcomes 
of the ACO’s utilization as a search strategy: (1) 
straightforward implementation of the weight reusability: it 
will find the graph’s lengthiest common sub-path and will 
use that sub-path’s best weights again, (2) there can be the 
search space’s progressive exploration as the ants are 
adaptable to the dynamic environment (that is, when there 
is expansion of the graph from depth n to depth n + 1, it will 
continue to retain the information that has been collected up 
to a depth of n + 1), and (3) with the utilisation of domain-
specific heuristics (Equation (2) and Equation (3)) by the 
ACO, domain experts can increase the search’s speed by 
easily offering their own expertise. 
 
3.3 SCE-ACO Algorithm 

In the SCE-ACO algorithm, a common search space is 
shared by the multiple ant colonies. Every ant colony will 
utilise the ACO algorithm for execution of the search activity 
as well as the pheromone update strategy. Inside the 
complex, certain elitist individuals are retained by using the 
elitist strategy. There is utilisation of the strategy named as 
min-max ant strategy to set each path’s concentration of 
pheromone. There is utilisation of the conventional SCE 
algorithm as an evolutionary mechanism. The SCE-ACO 
algorithm’s purpose is to exchange information amongst the 
sub-complexes, and its frequency, content, and strategy 
after the execution of certain iterations. These have a direct 
relation to the SCE-ACO algorithm’s efficiency as well as 
solution quality [19].Description of the various steps 
involved in the SCE-ACO algorithm are given as below. 
Step 1. There is division of the ant colony into many sub-
complexes within a common search space, where every 
sub-complex will execute the search activity as well as the 
pheromone update strategy. When there is division of multi 
objective optimisation issue into various sub-optimisation 
issues, every sub optimisation issue will correspond to a 
single sub-complex. 
Step 2. There is initialisation of SCE-ACO algorithm’s 

parameters: and  of the control parameters, m is the ant 

size,  is the pheromone trial evaporation rate, Tmax, is the 
maximum number of iterations and the t = 0 is iteration 
algebraic counter. The initialised values of ants, the 
parameters will get by stored by every ant as 

( ) ( , , )t
k k k kAnt q 

. 
Step 3:Evaluate value of fitness for every individual in every 
sub-complex, and determining the outcome will whether 
fulfil the end condition. When the end condition is fulfilled by 

results, then this outcome will be given as the output. Else, 
continue to the next step. 
Step 4:In accordance with the improved pheromone 
updating Equations (4) to (6), there is a pheromone update 
for each individual. 
Step 5. In every sub-complex, certain elitist individuals will 
get retained with the elitist strategy’s utilisation. There is 
evolution of the other ants for a new complex’s generation. 
Step 6. Every sub-complex will pick the current optimal 
individual, and this choice will get utilised to yield a whole 
solution with another sub-complex’s individual for 
completion of the interaction of information amongst these 
sub-complexes. 
Step 7. Every path’s concentration of pheromone is set 
using the min-max ant strategy, wherein every path’s 
concentration of pheromone is constrained within 

[ min max, 
] range. The value of max

is able for bypass the 
pheromone quantity of one path than concentration is 
greater than the other path for prevention of the 
concentration of all the pheromones on the same path. In 

addition, min
value is able to efficiently prevent the SCE-

ACO algorithm’s stagnation. 
Step 8. Determine the fulfilment of the maximum number of 
iterations. If there has been a fulfilment of the maximum 
iteration number, then there will be an output of the result. 
Otherwise, shift backwards to Step 3. 
 
3.4 Proposed SCE-PSO CNN Algorithm 

In 1995, Kennedy and Eberhart had initially proposed a 
nature-influenced meta-heuristic known as the PSO. The 
bird flocks’ behaviour is inspired the PSO will control the 
particles’ search for solutions that are globally optimal. In 
this algorithm, there is random diffusion of the particles are 
population of across the search space. The assumption is 
that these particles fly inside the search space. Every 
particle will have a velocity as well as a position that is 
iteratively updated on the basis of personal as well as social 
experiences. Every particle’s local memory will store the 
best so far achieved experience. Furthermore, the global 
memory will store the best solution found so far. However, 
the local memory as well as the global memory are 
constrained in size to one. The particle’s personal 
experience gets represented as the local memory while the 
swarm’s social experience gets represented as the global 
memory. Randomized correction coefficients are used to 
maintain a balance between the effects of both personal as 
well as social experiences. Minimization of the distance 
between the particle as well as the best personal and social 
known locations is the operating principle of the process of 
velocity update. Since the PSO enjoys much ease in 
implementation, it has been successfully deployed in 
numerous real-world applications [20]. 
Every particle in the standard PSO gets treated as a 
probable solution to the problem of numerical optimisation 
in a D dimensional space. In this search space, there is 
assignation of a position as well as a velocity to each 

particle. 1 2( , ,...., )i i i iDx x x x
will represent each 

particle’s position while 1 2( , ,...., )i i i iDv v v v
will 

represent each particle’s velocity. While all particles have 
their own local memory (p Best) to retain the best position 
experienced by the particle so far, there is also a globally 
shared memory (g Best) which will retain the best global 
position found so far. The below the equations (7 & 8) are 
used by this information to contribute towards every 
particle’s flying velocity: 
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(7)  1 2( ) ( )i i i i i iv v rand pBest x rand gBest x           
 

(8)  i i ix x v 
     

In these equations, 1 2 and  
 are constants which 

determine the relative influences of the personal as well as 
the social experiences. The approach’s performance can be 
increased through definition of the velocity component 
‘supper bound. Equation 8will offer an update of the particle 
position. 
In the standard PSO, guidance of the swarm is carried out 
by the g best model, that is, the best solution found so far 
by the entire swarm. Lately, numerous investigations have 
been done on various neighbourhood topologies for the 
PSO that utilises the l best model, that is,  every particle’s 
best current performance of its neighbours for replacement 
of the entire swarm’s best previous ones. This work has 
proposed the algorithm SCE-PSO with CNN to utilise the 
particle’s so far best found value of the function for 
definition of the relations of the neighbourhood. Akin to the l 
best model, this proposed algorithm will only consider a 
portion of the swarm to update a particle’s velocity. In 
accordance with the individuals’ fitness development, there 
is a constant change of the algorithm’s neighbourhoods 
[21].  
Step 1: Initialisation. Pickp≥1,m ≥1, in which, the number 
of complexes will be denoted as p, and each complex’s 
number of points will be denoted as m. Evaluate the sample 
size s = pm. In the feasible space, the samples has points 

1,..., sX X
. At each point Xi, there is evaluation of the 

function value,fi. 
Step 2: Rank. Sort the points in the function value’s 

increasing order. Use the array
{ , , 1,..., }i iE X f i s 

 to 
store these points. 
Step 3: Partition. Divide the array E into p 

complexes
1 2, ,..., pA A A , wherein every complex will 

consist of points m and will 

be: ( 1) ( 1){ , | , ,  1,..., }k k k k k
j j j k p j j k p jA X f X X f f j m      

. 
Step 4: Evolution. Separately use the PSO to evolve each 
complex Ak. 
Step 4.1: Initialisation. Pick q and T, in which q will denote 
the PSO’s population size, and T will denote the maximal 
iterated generation. 
Step 4.2: Selection. For a sub-swarm’s construction, in 
accordance with the values of the function, pick q distinct 

points, 1 ,...,k k
qY Y

from Ak. It is the better points in Ak which 
have more selection probability. These points can be stored 

in { , , , 1,...., }k k k k
i i iF Y V u i q  , in which

k
iV

will denote the 

velocity for particle 
k

iY
,and 

k
iu

will denote the associated 
value of the function. Identify the position of the best 
individual of the complex Gk as well as the best previously 

visited position of each particle 
k

iP
. 

Step 4.3: Comparison. Comparison is drawn between the 

function valuesof each particle 
k

iY
and 

k
iP

. 
k

iP
= 

k
iY

 when 
k

iY
is found to be better than 

k
iP

, then. Comparison is 

drawn between the function values of each particle 
k

iY
and 

Gk. 
k

iY
= Gk when

k
iY

is found to be better than Gk. 

Step 4.4: Renewal. Renew each particle’s position as well 
as velocity in accordance with the formulations (7& 8). 
Step 4.5: Iteration. Repeat Step 4.3 and Step 4.4 T 
number of times, in which T will denote a user-specified 
parameter that determines how quickly each complex must 
evolve. 
Step 5: Shuffling of the complexes. Replace 

1 2, ,..., pA A A into E. Sort E in the increasing order of 
function value. 
Step 6: Check the convergence. If there is fulfillment of 
the convergence criteria, then come to a halt. Otherwise, 
shift backwards to Step 4. 
The SCE-PSO will incorporate the PSO’s strengths, the 
competitive evolution as well as the complex shuffling 
concept. It will significantly boost the survivability through 
the sharing of information which has been independently 
acquired by each complex. In the SCE-PSO, every member 
of a complex is a potential parent capable of participating in 
the evolution process. A selected sub-swarm from the 
complex is akin to a pair of parents. For guaranteeing a 
competitive process of evolution, it is essential that, for 
contribution  to the offspring generation, the better parents 
have a higher probability that the worse parents. In the end, 
every new offspring will replace the current sub-swarm’s 
worst point instead of  that of the whole population. This will 
ensure that process prior to being discarded or replaced. 
Hence, there is no ignorance of any information contained 
in the sample. 
 
4 RESULTS AND DISCUSSION 
For the experiment, 182 normal and 47 glioma images are 
considered. In this section, the ACO-CNN, SCE-ACO CNN 
and SCE-PSO CNN methods are used. The table 1 shows 
the summary of results. The classification accuracy, 
precision, recall, and f measure as shown in figures 1 to 4. 
 

Table 1 Summary of Results 
 ACO-

CNN 
SCE-
ACO 
CNN 

SCE-PSO 
CNN 

Classification accuracy 89.52 93.01 95.2 
Precision for Non-
Gliomas 

0.9389 0.9611 0.9777 

Precision for Gliomas 0.7347 0.8163 0.86 
Recall for Non-Gliomas 0.9286 0.9505 0.9615 
Recall for Gliomas 0.766 0.8511 0.9149 
F-Measure for Non-
Gliomas 

0.9337 0.9558 0.9695 

F-Measure for Gliomas 0.75 0.8333 0.8866 
 

 
 
Fig. 1 Classification Accuracy for SCE-PSO CNN 
 
From the figure 1, it can be observed that the SCE-PSO 
CNN has higher classification accuracy by 6.15% for ACO-
CNN and by 2.33% for SCE-ACO CNN respectively. 
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Fig. 2Precision for SCE-PSO CNN 
 

From the figure 2, it can be observed that the SCE-PSO 
CNN has higher precision for non-gliomas by 4.05% for 
ACO-CNN and by 1.71% for SCE-ACO CNN respectively. 
The SCE-PSO CNN has higher precision for gliomas by 
15.71% for ACO-CNN and by 5.21% for SCE-ACO CNN 
respectively.  
 

 
 
Fig. 3 Recall for SCE-PSO CNN 
 

From the figure 3, it can be observed that the SCE-PSO 
CNN has higher recall for non-gliomas by 3.48% for ACO-
CNN and by 1.15% for SCE-ACO CNN respectively. The 
SCE-PSO CNN has higher recall for gliomas by 17.72% for 
ACO-CNN and by 7.22% for SCE-ACO CNN respectively. 
 

 
 
Fig. 4 Measure for SCE-PSO CNN 
 
From the figure 4, it can be observed that the SCE-PSO 
CNN has higher f measure for non-gliomas by 3.76% for 
ACO-CNN and by 1.42% for SCE-ACO CNN respectively. 
The SCE-PSO CNN has higher f measure for gliomas by 
16.69% for ACO-CNN and by 6.19% for SCE-ACO CNN 
respectively. 
 
5 onclusion 

Glioma grading has a critical role in the determination of 
the treatment plan as well as the prognosis prediction. 
There has been the development of efficient brain tumour 
grading methods on conventional MRI images which are 
based on deep CNNs. This work has presented the ACO-

CNN which will produce an ant population that utilises the 
pheromone information in the collective search for the best 
neural architecture. In addition, this method will ensure a 
balance between the exploitation and the exploration 
through utilisation of local as well as global pheromone 
update rules. The SCE-ACO algorithm will enhance the 
pheromone update formula as well as restrict the 
pheromone’s update range for realisation of  the 
pheromone’s adaptive update. There is division of the multi-
objective optimisation problem into various sub-complexes 
with a corresponding population that will execute the search 
activity as well as the pheromone update strategy. In this 
work SCE-PSO algorithm is proposed, a population of 
points is sampled randomly in the feasible space. Then the 
population is partitioned into several complexes, which is 
made to evolve based on PSO. Results show that the SCE-
PSO CNN has higher classification accuracy by 6.15% for 
ACO-CNN and by 2.33% for SCE-ACO CNN respectively. 
 
 
Equations 

For equations it is recommended to use standard 
equation editor existing in Word editor (usually it is Math 
Type editor). The equation editor is defined as follows: font 
Times New Roman italic, matrix bold, for letters font 10, for 
index 8, for symbol 12. For example, typical equation 
should be as: 
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where: J – current density, r – distance, A,B,C – coefficients. 
 

Insert the equation number on the left side (it seems as 
strange, but it is old tradition of our journal), between the 
text and the equation please leave the distance of 6 points. 
It is not accepted insertion of the equations into tables. 

The new versions of Word offer the equation editor not 
compatible with Math Type - thus after conversion to older 
version the equation is a very bed quality "bitmap". The 
solution is to use original Math Type software. 

If the figure is as wide as the whole page we can insert 
two sections lines and between them change the one-
column style - as it is presented in Fig. 2. 

Please do not insert the figures into the tables (with an 
exception of special case where we would like to order 
several sub-figures into one figure).  

If there are problems with electronic version of the 
figures it is recommended to deliver the article with 
supplemented “hard copies” of the figures. This means that 
also a “printed version” of the figures should be included for 
eventual scanning. But of course scanned figure is not as 
good quality as original one. 

It is possible to print figures in the colour version, but 
Authors should take into account that colour page is much 
more expensive than black/white and moderation in 
applying of the colour is advisable.  
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