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Abstract. Inertial Navigation Systems (INS) provides precise data for short time-period, but their accuracy diminishes over time, especially with low-
cost sensors. To maintain acceptable accuracy, sensor error components must be accurately calibrated/modelled. Different methods have been 
used to characterize the inertial sensors stochastic errors, including the Autocorrelation function (ACF), Allan variance (AV) and the Generalized 
Method of Wavelet Moments (GMWM). This paper focuses on the analysis of Micro-Electromechanical Systems (MEMS)-based inertial sensor 
errors under various conditions. The inertial sensor stochastic error processes are estimated using both the AV and the GMWM techniques. Based 
on the comparison between both stochastic analysis tools, the GMWM was selected and a GMWM-based model selection criteria is utilized to rank 
candidate error models. An extended 39-states integrated GNSS/INS navigation algorithm (based on the chosen error model) is proposed and 
compared with a standard 15- states integrated GNSS/INS navigation algorithm (based on 1st Gauss-Markov process for modelling the stochastic 
errors). The study analyses various stochastic error models using real data of Inertial Navigation System (INS) and Global Positioning System (GPS) 
with intended GPS signal outage periods. Results reveal enhanced position accuracy with the proposed algorithm and superior performance with 
GMWM-based error model over standard ACF-based one. 
 
Abstrakcyjny. Inercyjne systemy nawigacji (INS) dostarczają dokładnych danych przez krótki okres czasu, ale ich dokładność maleje z czasem, 
szczególnie w przypadku tanich czujników. Aby zachować akceptowalną dokładność, składowe błędu czujnika muszą być dokładnie 
skalibrowane/modelowane. Do charakteryzowania błędów stochastycznych czujników inercyjnych zastosowano różne metody, w tym funkcję 
autokorelacji (ACF), wariancję Allana (AV) i uogólnioną metodę momentów falkowych (GMWM). W artykule skupiono się na analizie błędów 
czujników inercyjnych opartych na systemach mikroelektromechanicznych (MEMS) w różnych warunkach. Procesy błędów stochastycznych czujnika 
inercyjnego są szacowane przy użyciu technik AV i GMWM. Na podstawie porównania obu narzędzi analizy stochastycznej wybrano GMWM, a 
kryteria wyboru modelu oparte na GMWM zastosowano do uszeregowania modeli potencjalnych błędów. Zaproponowano rozszerzony, 39-stanowy 
zintegrowany algorytm nawigacji GNSS/INS (oparty na wybranym modelu błędów) i porównano go ze standardowym 15-stanowym zintegrowanym 
algorytmem nawigacji GNSS/INS (opartym na pierwszym procesie Gaussa-Markowa do modelowania błędów stochastycznych). W pracy 
przeanalizowano różne modele błędów stochastycznych wykorzystując rzeczywiste dane z systemu nawigacji inercyjnej (INS) i globalnego systemu 
pozycjonowania (GPS) z przewidywanymi okresami zaniku sygnału GPS. Wyniki ujawniają zwiększoną dokładność pozycjonowania dzięki 
proponowanemu algorytmowi i lepszą wydajność dzięki modelowi błędów opartemu na GMWM w porównaniu ze standardowym modelem opartym 
na ACF. (Poprawa wydajności integracji INS/GPS KF w oparciu o dokładne modelowanie błędów stochastycznych z czujników inercyjnych) 
 
Keywords: Inertial Navigation Systems (INS), Global Positioning System (GPS), Autocorrelation function (ACF), Allan Variance (AV), 
Generalized Method of Wavelet Moments (GMWM), Inertial Sensors Errors, Confidence Interval (CI), Wavelet Information Criterion (WIC). 
Słowa kluczowe: Inercyjne systemy nawigacji (INS),  globalnego systemu pozycjonowania (GPS), Funkcja autokorelacji (ACF),. 
 
 
Introduction 

Navigation is a method to determine the velocity and 
position, sometimes include the attitude, of a moving target 
with apriore known reference [1]. There are two methods to 
get a navigation solution: position fixing, with The Global 
Positioning System (GPS) being a typical example, and 
dead reckoning (DR), with Inertial navigation system (INS) 
being a typical example. The GPS is an accurate navigation 
system that is known to be for different outdoor 
applications. GPS may be exposed to signal outages, 
jamming, multipath effects, or any other sources of 
interference [2]. On the other hand, the INS provides high 
frequency precise short-term navigation information [3]. 
However, their accuracy degrades rapidly with time [1]. The 
INS/GPS integration provides an accurate complementary 
system with better performance, in comparison of 
standalone system and overcomes their individual 
drawbacks [4].  

Generally, for INS/GPS integration, GPS is usually 
responsible for providing velocity and position information 
(with relatively high accuracy and low data rate). On the 
other hand, INS provides the position, velocity and attitude 
(PVA) information (with higher data rate). GPS updates 
prevents INS from drifting and INS provides continuous 
navigation solution even with GPS signal outages. 
Recently, Micro Electromechanical Systems (MEMS)-based 
inertial sensors have been developed to provide a low-cost 
navigation solution that could be used in INS/GPS 
integration system [5]. MEMS-based inertial sensors are 
known with their light weight, low-cost, small size and low 
power consumption modules, but rarely achieve the 
required navigation solution accuracy [6] because of the 

unwanted deterministic and stochastic errors that added to 
the signal measured by the sensor [7]. Based on that, 
laboratory calibration is essential to eliminate the 
deterministic error’s part (such as systematic bias offset and 
scale factor error). The stochastic error’s part (such as 
white noise and random walk) requires special noise 
characterization techniques for modelling and estimation. 
The two error types considerably influence the PVA of the 
moving platform estimated by the module which affects the 
accuracy of the navigation solution, especially when INS 
works as a standalone system during GPS signal outages. 

 

Review of Previous Work 
An Inertial Measurement Unit (IMU) generally outputs 

3D accelerations and angular rates, which further be 
integrated to achieve representative PVA information [1]. 
IMU outputs normally includes different types of error 
sources, deterministic and stochastic errors [8]. These 
errors will be accumulated by the integration process in the 
navigation algorithm resulting in a significant drift in the 
navigational states [9]. So, various stochastic error 
modelling methods have been used to reduce the inertial 
sensors error terms, some of the methods are frequency 
domain and the others are time domain [10], [11]. For 
instance, Autocorrelation function (ACF) method was used 
in [12] to examine the correlation time of consumer grade 
IMU used to determine an attitude information. Another 
correlation method, an autoregressive moving-average 
process, was used in [13] which associates the 
autocovariance of a difference equation to the coefficients. 
However, a major limitation of the correlation technique is 
typically not the ideal option to handle high range of 
dynamics or higher order random processes [14]. 
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Furthermore, Power Spectral Density (PSD), known as a 
frequency-domain stochastic analysis technique, was used 
to model the inertial sensor errors is the in [15]. ACF is, in 
fact, the Fourier Transform (FT) of the ACF. But still a major 
restriction of this technique is associated with the low 
frequency part of the PSD log-log plot which however 
transmits some data with high uncertainty [16]. This 
drawback affects the accuracy of recognizing the 
parameters of low frequency noise greatly while examining 
the noise of inertial sensor output for long-term datasets. 
There are various time-domain methods that have been 
investigated. The most widely used one is the Allan 
Variance (AV) which was essentially presented to study the 
stability of the frequency for oscillators [14]. AV is known to 
be straightforward, simple to compute and to understand. 
However, a major limitation of such technique is the 
incidence of ambiguity when represents a real AV log-log 
plot as a sum of more than one random process. Another 
estimation method, called the Generalized Method of 
Wavelet Moments (GMWM) that was presented in [17]. 
GMWM has some advantages that could offer an efficiency 
and flexibility in computations and considered as user-
friendly and statistically tool to select and estimate from a 
broad range of stochastic error models [18]. From the 
Generalized Method of Moments (GMM) estimators, the 
GMWM utilizes the relationship between the Wavelet 
Variance (WV) and the parameters of the stochastic 
process, then the parameters could be estimated by 
reducing the distance between the implied and empirical 
WV to estimate the time series stochastic error processes 
[17], [19]. Beside the limitations of each technique, all the 
previous research works have a common restriction while 
examining the environmental conditions, such as 
temperature variation [20] and platform dynamics [21]. 
Bothe aforementioned environmental conditions affects the 
sensor’s stochastic error parameters values, especially for 
long data sets, which, consequently, affects the output of 
the inertial sensors. However, the investigation of the effect 
of the environmental conditions on the stochastic error 
modelling process is beyond the scope of this paper. 
  

Aim and Scope of Study 
The goal of the paper is to enhance the accuracy of the 
navigation solution of INS/GPS integrated systems for low-
cost MEMS-based IMUs using stochastic error models 
through the following steps:  
 Laboratory stationary data collection process using 
Spatial Advanced Navigation IMU was executed. 
 Three different noise analysis approaches are utilized 
to expose, examine and reveal the inertial sensor stochastic 
error part: 

1. ACF as a commonly used approach (where its results 
will be used in the standard 15-states integrated 
navigational algorithm) 

2. AV and GMWM as more complicated techniques with 
additional mathematical calculation steps  

 A fair comparison will be applied to examine the 
advantages and constraints of both AV and GMWM 
approaches in terms of the ability of identifying inertial 
sensors errors parameters. The best results from one of 
them will be used in the proposed extended integrated 
navigational algorithm after performing a fitting test. 
 Finally, a proposed extended navigation algorithm 
(based on the best model chosen from the better approach) 
is introduced. Then a fair comparison is conducted between 
the performance of both extended and standard widely 
used navigation algorithms (based on one 1st order Gauss 
Markov process per sensor that is obtained from the ACF 
technique) during GPS signal outage periods. 

Methodology 
Random Processes Models for Inertial Sensor Errors: 
The main inertial sensors stochastic error processes are 
defined as follow (see Table 1 for more details regarding 
associated (PSD)):  
 Gauss Markov (GM): 

This error process considered to have an exponentially 
correlation time [22]. It has an acceptable accuracy while 
fitting various physical processes with simple math 
operations. 
 Quantization Noise (QN):  
This type of error is generated while representing an analog 
signal in digital form. The difference between the 
amplitudes of the sampled points and the bit resolution of 
the Analog to Digital converter is referred to as quantization 
error  [14]. 
 White Noise (WN):  
This error is also known as Angular Random Walk (ARW) 
for gyroscopes and Velocity Random Walk (VRW) for 
accelerometers and is considered as a high-frequency 
noise type that has very short correlation time compared 
with the sample period [14]. 
 Bias Instability (BI): 
This error considered as a low-frequency noise type and 
generated due to the use of the electronics components in 
MEMS-based inertial sensors. It causes fluctuations in the 
bias in the measurements [23]. 
 Random Walk (RW): 
This error considered as an exponentially low-frequency 
noise type that has long correlation time [24]. This is known 
as Rate Random Walk (RRW) for gyroscopes and 
Acceleration Random Walk (AccRW) for accelerometers. 
 Drift Ramp (DR): 
This error considered as a very low-frequency noise type 
and is known as Drift Rate Ramp (DRR) for gyroscopes and 
Drift Acceleration Ramp (DAccR) for accelerometers. 

 
Table 1. Random Processes with Associated PSDs 
Stochastic Processes Coefficient PSD 

Gauss Markov β, 𝝈𝑮𝑴
𝟐  𝑆 𝑓  =  

Quantization Noise Q 𝑆 𝑓  = 4 𝑠𝑖𝑛 2𝑓𝑇  

White Noise W 𝑆 𝑓  = 𝑊  

Bias Instability B 𝑆 𝑓  = 
𝑖𝑓 𝑓 𝑓

0 𝑖𝑓 𝑓 𝑓
 

Random Walk K 𝑆 𝑓  =  

Drift Ramp D 𝑆 𝑓  =  

 
Stochastic Noise Characterization Techniques [25]: 
Autocorrelation function (ACF): 

Autocorrelation is the correlation between two values in 
a time series. ACF, sometimes known as a serial correlation 
in the discrete time case, reveals how the correlation 
between any two values of the signal changes as their 
separation changes [26]. It is a time-domain representation 
method that clarifies the change of the data’s phase and the 
correlation with the original data [27]. The ACF assess the 
correlation between observations in a time series for a set 
of lags. ACF is used to identify which lags have significant 
correlations, understanding the patterns and the properties 
of the time series and then using this information to model 
the time series stochastic data [28]. In this paper, ACF is 
used to characterizing the inertial sensor stochastic errors 
(as an easy and standard stochastic approach) by 
determining the 1st order GM process parameters, the time 
constant reciprocal (β) and the GM standard deviation 
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(𝜎 ), for the IMU signal. The ACF of a 1st order GM 
process is shown in Fig. 1. 
The ACF is defined mathematically as follow: 

(1)                𝜌 𝜏  =  = 
𝔼 ,  𝔼

 𝔼  𝔼
      

Where  𝜌 𝜏  is the ACF of X, 𝜏 is the lag/shift time, 
𝐶𝑜𝑣 𝑋 𝑋  is the covariance between the two functions, 
𝑉𝑎𝑟 𝑋  is the variance of 𝑋  and 𝔼 .  Is the expectations. 

Fig. 1. The ACF of a 1st Gauss Markov process [29]. 
 
Allan Variance (AV): 

The Allan variance is a time domain tool of representing 
the Root Mean Square (RMS) random-drift errors as a 
function of averaging times [14]. It is straightforward to 
understand, compute and interpret. The AV technique could 
be used to characterize various inertial sensor stochastic 
error processes in different datasets. The AV mathematical 
processes are demonstrated in [30], [31]. 
 
The mathematical equation formula of the standard AV is: 

(2)         𝜎 𝑇   ∑ Ω 𝑇   Ω 𝑇      

Where Ω 𝑇  is the mean value of the 𝑘 cluster,  Ω𝑛𝑒𝑥𝑡 𝑇  is 
the mean value of the sub-sequent cluster, 𝑇 is the length of 
the cluster, 𝑁 is the entire length of the data points, n is the 
number of data points in each cluster 𝑛  𝑁 2⁄ . 
 
The relationship between the standard AV 𝜎 𝑇  and the 
Power Spectral Density of the stochastic processes is:  

(3)                    𝜎 𝑇 4 𝑆Ω 𝑓 𝑑𝑓           

Where 𝑆Ω 𝑓  is the PSD of the stochastic process Ω T . 
 

Fig. 2. Standard deviation AV log-log plot with the basic noise 
parameters [32]. 

The AV algorithm is applied to the static data collected 
in laboratory condition to obtain the characteristic curve to 
reveal the types and values of the stochastic errors that 
concentrating in the data. The collecting data should be free 
of outliers to get the correct model that represent the signal. 
So, a contamination test is needed to implement to the data 
before applying the AV algorithm. The AV approach cannot 
offer this task counter to the GMWM which will be 
highlighted in the next section. 
 
Generalized Method of Wavelet Moments (GMWM): 

GMWM is considered as an efficient and flexible tool to 
determine and select the best model that represents the 
signal under investigation. GMWM is an optimal estimator 
technique based on the WV and the Generalized Method of 
Moments (GMM) [17]. The GMWM estimates the 
parameters of the stochastic processes by decreasing the 
distance between the implied WV and the empirical one. 
The flowchart of the GMWM approach is explained in Fig. 3. 
A contamination test could be applied to the collected 
datasets by computing the robust WV and compared with 
the classical one to check the datasets that contain any 
contaminations (or outliers) according to the CI and as 
shown in Fig. 4 and 5 [17]. The next step is the estimation 
of stochastic error parameters values of all the suggested 
models. Then, the Wavelet Information Criterion (WIC) 
approach is used to ranking and selecting the best model 
that represent the signal [19]. The WIC approach includes 
the objective function term, show if the suggested model 
fitting the signal, and the optimism term, show the complex 
degree of the suggested model. The large the number of 
the stochastic processes in the selected model, the small 
the value of the objective function term and the large the 
value of the optimism term. 

The direct PSD integration is the wavelet coefficients 
variances. This equation forms a relationship between the 
PSD and WV as follow:  

(4)      𝑣 Ө  𝑆 𝑓  𝑑𝑓  𝐻 𝑓  𝑆
Ө

𝑓  𝑑𝑓. 

Where 𝐻 𝑓  is the transfer function of the filter ℎ , , 𝐹Ө is 
the estimated model that consists of the stochastic 
processes, |. | denotes the modulus operator and  𝑆

Ө
  is the 

PSD of the estimated model 𝐹Ө. 
  

 
Fig. 3. The flowchart of the GMWM approach [32]. 
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Fig. 4. Classical Vs robust WV of accel Z. 
 

Fig. 5. Classical Vs robust WV of gyro Z. 
 
The GMWM estimator is used for decreasing the distance 
between the implied WV and the empirical one to evaluate 
the stochastic processes parameters as follow: 

(5)                Ө = argminӨ∈ 𝑉 𝑉 Ө Ω 𝑉 𝑉 Ө  

Where Ω is a positive definite weighting matrix, selected by 
a specific manner, to create the GMWM estimator more 
practical and efficient, Ө is the vector of the time series 
model parameter [33]. 
The full mathematical and calculation steps for the GMWM 
approach is explained in [33]. 
 
Inertial Data Collection and Analysis 

In this paper, inertial sensor data collected from Spatial 
Advanced Navigation module was used for the stochastic 
error modelling using 3 different techniques (ACF, AV and 
GMWM). The Spatial module is relevant small (i.e., a cube 
of 30 mm in height with 40.6 mm length and 24 mm width) 
and light in weight, 37 grams. The initial bias for gyro is 
about 0.2° 𝑠⁄  and for accelerometer is about 20 ug. Two 
different methods are used to collecting the datasets, the 
static and dynamic in-field modes. First, multiple datasets 
were collected in static conditions using the same module 
and at the same environmental conditions (including room 
temperature and data length). The purpose of repeating the 
same test is to ensure that every individual sensor has the 
same performance for each test. Second, the parameters 
obtained from the analysing of such multiple datasets using 
various stochastic techniques will be used as input to the 
integrated navigation algorithm to evaluate the performance 
of INS standalone-based navigational solution during 
intended GPS signal outage. 
 
Static Data Collection: 

In the static mode 4 hours static datasets were collected 
at room temperature in laboratory conditions for each 
inertial sensor at 100 Hz sampling rate (see Fig. 6). 

The performance estimation of the inertial sensor 
MEMS-based IMU is applied using the ACF, AV and 
GMWM approaches to study the characterization of the 
stochastic noise and identify the parameters of the inertial 
sensor stochastic error processes for each individual 

technique. Then, a comparison between AV and GMWM 
methods is applied to know the best technique for 
representing the inertial sensor stochastic errors by study 
the fitting from both techniques with the original signal (see 
Fig. 11).  
 

  Fig. 6. Collecting static data setup in laboratory conditions. 
 
ACF Data Analysis: 
The ACF approach is applied to all static datasets. Taking 
the 2nd dataset as an example, Fig. 7 and 8 illustrate a 1st 
order GM process for x-gyro and x-accelerometer, 
respectively. Table 1 lists the coefficients of the stochastic 
errors after applying the ACF approach to the 
accelerometers and gyros of the 2nd dataset. 
 

Fig. 7. A 1st order GM process for gyroscope x. 
 

Fig. 8. A 1st order GM process for accelerometer x. 
 

Table 2. ACF parameters for the 2nd dataset as an example using 
the ACF method. 

 β (𝑠𝑒𝑐 ) 𝜎 (𝑚 /𝑠𝑒𝑐 ) 
Accel X 0.000115275 1 
Accel Y 0.0001579941 1 
Accel Z 0.00090662653 1 

 β (𝑠𝑒𝑐 ) 𝜎 (𝑑𝑒𝑔 /ℎ ) 
Gyro X 0.00021 1 
Gyro Y 0.0002 1 
Gyro Z 0.005197 1 
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AV Data Analysis: 
The AV approach is applied to all the static datasets. 

Taking the 2nd dataset as an example, Fig. 9 and 10 
illustrates a standard deviation AV log–log plot for the 
Spatial gyros and accelerometers measurements, 
respectively. Table 2 lists the coefficients of the stochastic 
errors after applying the slope fitting technique associated 
with the AV approach to the accelerometers and gyros data. 
From Table 2, for Gyros, the dominant noise process for the 
high-frequency term at slope –1/2 is the ARW and the 
dominant noise process for the low-frequency term at slope 
1/2 is the RRW and, for Accelerometers, the dominant 
noise process for the high-frequency term at slope –1/2 is 
the VRW and the dominant noise process for the low-
frequency term at slope 1/2 is the AccRW as shown in Fig. 
11. 
 

 
Fig. 9. Standard deviation AV analysis log-log plot for 
accelerometers measurements for the 2nd static dataset. 
 

 
Fig. 10. Standard deviation AV analysis log-log plot for gyroscopes 
measurements for the 2nd static dataset. 
 

 
Fig. 11. Standard deviation AV log-log plot for Accel X as an 
example with the corresponding identified error processes. 
 
Table 3. Stochastic error processes parameters for the 2nd static 
dataset as an example using the AV method. 

 
White Noise 

(m/s/√h) 
Bias Instability 

(m/s/h) 
AccRW 

(m/s/ℎ . ) 
Accel X 0.00071958 0.00026149 1.58e-05 
Accel Y 0.00064866 0.00038815 2.56e-05 
Accel Z 0.0035083 0.0018724 0.0001326 

 White Noise Bias Instability RRW 

(deg/ √h) (deg/h) (deg/ℎ . ) 
Gyro X 0.0030743 0.0020929 0.0004313 
Gyro Y 0.0031968 0.0019866 9.143e-05 
Gyro Z 0.073062 0.030576 0.0033188 

 
GMWM Data Analysis: 

As mentioned before, GMWM is used to characterizing 
the stochastic error processes existing in the 
measurements of the static data then calculating the 
corresponding parameters of them [34]. First, a 
contamination test is applied to compare between the 
classical and robust WV of the static dataset to check if the 
data is contaminated by any outliers. As shown from Fig. 4 
and 5, the two WVs are laying inside the confidence interval 
(CI) of each other so the data is considered to be clean. 
The WIC approach select the best model that represents 
the corresponding stochastic error processes. Some 
candidate models were chosen accurately to represent the 
inertial sensor signal structures as found in Table 3. The 
WIC numerical value was calculated for each model and the 
model 3*GM+RW+WN (indexed 23) was found to has the 
smallest numerical value of the WIC for gyros and 
accelerometers, respectively [35], [36]. Fig. 12 and 13 show 
that the selected model has an estimated WV with accurate 
fitting with the empirical WV of the original sensors data. 
Table 4 lists the numerical values of the corresponding 
parameters of each stochastic noise processes for the 
selected model after performing the GMWM approach. 
Based on the analysis performed using the AV and GMWM, 
it is clear that the GMWM outperforms the standard AV in 
terms of: 
 Characterizing latent stochastic noise terms 

associated with inertial sensors. 
 Testing inertial sensors data undertest using 

contamination test. 
Thus, results obtained from the GMWM will be adopted for 
building a proposed integrated navigation algorithm.  
 
Table 4. Suggested models for representing the inertial sensor 
signal for the Spatial module static dataset. 
Index Suggested model Index Suggested model 

1 GM 23 3GM+DR+RW 
2 GM+WN 24 3GM+WN+DR+RW 
3 GM+DR 25 4GM 
4 GM+RW 26 4GM+WN 
5 GM+WN+DR 27 4GM+DR 
6 GM+WN+RW 28 4GM+RW 
7 GM+DR+RW 29 4GM+WN+DR 
8 GM+WN+DR+RW 30 4GM+WN+RW 
9 2GM 31 4GM+DR+RW 

10 2GM+WN 32 4GM+WN+DR+RW 
11 2GM+DR 33 5GM 
12 2GM+RW 34 5GM+WN 
13 2GM+WN+DR 35 5GM+DR 
14 2GM+WN+RW 36 5GM+RW 
15 2GM+DR+RW 37 5GM+WN+DR 
16 2GM+WN+DR+RW 38 5GM+WN+RW 
17 3GM 39 5GM+DR+RW 
18 3GM+WN 40 5GM+WN+DR+RW 
19 3GM+DR 41 WN 
20 3GM+RW 42 DR 
21 3GM+WN+DR 43 RW 
22 3GM+WN+RW 44 DR+RW 
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Table 5. The stochastic error processes parameters for the 2nd dataset as an example using the GMWM for the best selected model.  

 

 

Fig. 12. The empirical vs implied WV for the selected model for 
Accel X as an example. 
 

 
Fig. 13. The empirical vs implied WV for the selected model for 
Gyro X as an example. 
 
Dynamic Data Collection: 

After collecting the static data, dynamic in-field datasets 
are collected to compare between the models and 
associated parameters the parameters estimated using 
different stochastic approaches for the IMU undertest. The 
Spatial Advanced Navigation was installed on the roof of a 
moving vehicle with a laptop to record the datasets. A long 
straight line with multi turns was travelled in open sky 
conditions for 30 minutes dynamic with 200 Hz sampling 
rate for inertial sensors and 1 HZ sampling rate for GPS.  
 
Testing and Validation using a Modified INS/GPS 
Navigation Algorithm 

After choosing the best model from the static dataset, a 
modified loosely coupled INS/GPS integration navigation 
algorithm was proposed based on the selected best model 
from the GMWM. The modified navigation algorithm that 
consists of 39 states (see Fig. 14) based on the best model 
with the smallest value of WIC. The model structure has: 
 Three 1st order GM processes 
 A WN process  
 A RW process 

Thes, the model is presented as 3GM+RW+WN. The 
navigation solution obtained for the dynamic dataset with 
GPS signal outages from the modified 39-states integrated 
navigation algorithm is compared to the standard 15-states 
one, i.e., the navigation solution is evaluated separately 
from the two integrated navigation algorithms to compare 
the performance of each other. In this case, the navigation 
solution is evaluated from the INS only, the INS works as a 
stand-alone system, until the GPS signal is repurchased. 
Therefore, the accuracy of the navigation solution during 
GPS signal outages is completely relies on the quality of the 
INS sensor data after inertial sensor error models are 
implemented.  
 

 
Fig. 15. The position error for the two navigation algorithms in 2D. 
 

Tests results 
Dynamic data was employed with the standard 

navigation algorithm that consists of 15-states based on the 
1st order GM process with intended GPS outages at 
different periods, then the same data is used with the 
modified navigation algorithm that consists of 39-states 
based on the model selected by the GMWM 
(3*GM+RW+WN) with the same GPS outages at the same 
periods used for the standard algorithm. The position errors 
are computed by subtracting the INS/GPS solution that 
contains the GPS signal outage from the reference solution, 
GPS data. Then, the magnitude of the position errors during 
the selected GPS signal outages was computed for each 
algorithm, individually as found in Table 6. As shown from 
Fig. 15, the position errors from the modified navigation 
algorithm are less than that from the standard navigation 
algorithm. This means that the quality of the INS-based 
navigation solution (when the INS is used as a standalone 
system during GPS signal outage) is improved by using the 
modified 39-states integrated navigation algorithm 
associated with the stochastic noise parameters estimated 
using the GMWM.  

Sensor 
GM#1 GM#2 GM#3 

WN  
(m/s/√sec) 

AccRW 
(m/s/𝑠 . ) 

β  
 (𝑠𝑒𝑐 ) 

𝝈𝑮𝑴
𝟐  

(𝑚 /𝑠𝑒𝑐 ) 
β  

(𝑠𝑒𝑐 ) 
𝝈𝑮𝑴

𝟐  
(𝑚 /𝑠𝑒𝑐 ) 

β   
(𝑠𝑒𝑐 ) 

𝝈𝑮𝑴
𝟐  

(𝑚 /𝑠𝑒𝑐 ) 

Accel X 
5.610237e-04 1.222059e-05 4.137647e+00 

1.171017e-14 2.420073e-06 
1.340726e-07 1.849303e-07 3.944171e-05 

Accel Y 
7.170143e-04 6.714848e-04 4.085116e+00 

3.117214e-12 4.119769e-07 
3.563531e-08 1.247150e-07 4.931947e-05 

Accel Z 
4.552093e-03 3.725952e-04 3.813356e+00 

6.441214e-12 2.748302e-06 
1.594431e-07 1.126158e-07 3.437161e-05 

Sensor  
GM#1 GM#2 GM#3 

WN  
(deg/√sec) 

RRW 
(deg/𝑠 . ) 

β   
(𝑠𝑒𝑐 ) 

𝝈𝑮𝑴
𝟐  

(𝑑𝑒𝑔 /ℎ ) 
β  

(𝑠𝑒𝑐 ) 
𝝈𝑮𝑴

𝟐  
(𝑑𝑒𝑔 /ℎ ) 

β   
(𝑠𝑒𝑐 ) 

𝝈𝑮𝑴
𝟐  

(𝑑𝑒𝑔 /ℎ ) 

Gyro X 
7.564539e-03 1.494725e-04 7.715196e+00 

2.080217e-10 1.132238e-04 
2.072914e-06 3.735622e-06 1.094648e-03 

Gyro Y 
2.208402e-03 2.420189e-04 3.165993e+00 

1.733841e-09 4.980642e-05 
1.590331e-06 7.664207e-08 7.690319e-04 

Gyro Z 
5.621800e-03 1.609017e-04 3.045637e+00 

6.363819e-11 2.684013e-05 
5.526396e-06 4.008904e-06 7.639954e-04 
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Fig. 14. Extended 39-stated loosely coupled INS/GPS integration using Kalman Filter. 
 
Table 6. Magnitude of the position error for the two algorithms 
during GPS signal outage periods. 

Model 
Outage 1 

(m) 
Outage 2 

(m) 
Outage 3 

(m) 
The modified algorithm 

(39 states) 
55 11 33 

The standard algorithm 
(15 states) 

138 19 85 

 
Table 7. accelerometer biases and gyro drifts estimation results. 

sensor 
Accelerometer Bias 

(m/s/s) 
Accel X -0.0264 
Accel Y -0.0091 
Accel Z 0.0133 

sensor 
Gyroscope Drift 

(degree/sec) 
Gyro X -0.0024 
Gyro Y 0.00101 
Gyro Z 0.001139 

 
Conclusion 

The target of this paper is to improve the positioning 
accuracy of INS/GPS integrated systems using a modified 
navigation algorithm. First, calibration methods are used to 
calculate the biases for the accelerometers and gyros, six 
position static test method and rate test method are used as 
found in Table 7. Second, static and dynamic datasets were 
collected under specific conditions. Then, three different 
tools, namely the ACF (as a standard common noise 
characterization approach), AV and GMWM, were used for 
modelling the inertial sensors stochastic errors. The GMWM 
presents higher efficiency in terms of the characterization of 
the stochastic error terms for inertial sensors 
measurements than the ACF and AV. The ACF and AV 
tools could not identify the outliers in the datasets which 
could lead to incorrect modelling for the stochastic error part 
in addition to their individual demerits. The GMWM defeated 
this demerit by comparing the classical WV with a robust 
one to check for outliers through a contamination test. The 
WIC value, which concessions the complexity and 
goodness-of-fit of each model, was calculated for forty-four 
models and the model structured as 3*GM+RW+WN was 

found to have the smallest value of WIC for accelerometers 
and gyros. 

 Based on the selected model, a modified integrated 
navigation algorithm was proposed that consists of 39-
states. Comparison between the modified algorithm and the 
standard 12-states algorithm using in-field dynamic dataset 
was obtained during intended GPS signal outages. Results 
highlighted that a single 1st order GM process is not 
practical for modelling the stochastic error part of the inertial 
sensors, especially for low-cost sensors. Thus, to enhance 
the accuracy navigation solution, more stochastic error 
processes are needed for modelling the inertial sensor 
stochastic errors in the INS/GPS integration algorithms. It is 
clarified that the drift in the INS signal in the modified 
algorithm is reduced by significant values than the standard 
one. So, the modified navigation algorithm leads to more 
robust navigation solution. 
 
Future work will cover: 
 Using Artificial intelligence, machine learning and 
deep learning for analysis and modelling the stochastic 
error for low-cost MEMS-based IMUs. 
 Studying the temperature effect on the stochastic 
error modelling of inertial sensors. 
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