

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 12/2024 113

1. Piotr POWROŹNIK1, 2. Filip OPŁOTNY2, 3. Mateusz KOMAROWSKI2, 4. Igor KOROPIECKI2,
5. Krzysztof TURCHAN2, 6. Krzysztof PIOTROWSKI2

University of Zielona Góra, Institute of Metrology, Electronics and Computer Science (1), IHP - Leibniz-Institut für innovative
Mikroelektronik, Frankfurt (Oder), Germany (2)

ORCID: 1. 0000-0001-7485-9959; 2. 0009-0000-0889-1096; 3. 0009-0008-9002-073X; 4. 0000-0002-4405-5180; 5. 0000-0001-6080-2468;
6. 0000-0002-7231-6704

doi:10.15199/48.2024.12.25

Selection of database for efficient energy management in a
power grid

Abstract. Database selection in a measurement and control system is based on criteria that ensure system stability, reliability, data security,
scalability, and lower infrastructure costs. Efficiency is also crucial, guaranteeing GUI responsiveness and enabling complex data analysis. A data
management solution utilizing smartDSM middleware was outlined in the article. This Java-based software facilitates CRUD operations and easy
database engine addition. Reflectivity-based modularity streamlines implementation. The solution's effectiveness is confirmed by test results.

Streszczenie. Wybór bazy danych w systemie pomiarowo-sterującym opiera się na kryteriach zapewniających stabilność, niezawodność,
bezpieczeństwo danych, skalowalność i niższe koszty infrastruktury. Istotna jest również efektywność gwarantująca responsywność GUI
i umożliwiająca złożoną analizę danych. W artykule przedstawiono rozwiązanie do zarządzania danymi z zastosowaniem middleware smartDSM.
Jest to oprogramowanie w Javie, ułatwiające operacje CRUD i łatwego dodawania silników bazodanowych. Modularność oparta na mechanizmie
refleksji usprawnia implementację. Skuteczność rozwiązania potwierdzają wyniki testów. (Wybór bazy danych dla efektywnego zarządzania
energią w sieci elektroenergetycznej)

Keywords: energy management, middleware, database, graphical user interface.
Słowa kluczowe: zarządzanie energią, oprogramowanie pośredniczące, baza danych, graficzny interfejs użytkownika.

Introduction

The advancement of information technology (IT) is a
dynamic and continuously evolving process that impacts
nearly every aspect of our lives, including how we generate,
distribute, and consume electricity. In the context of energy
management in power grids, IT plays an increasingly crucial
role, becoming an indispensable tool for ensuring the
efficiency, reliability, and security of energy systems. IT
enables the real-time collection and analysis of data from
sensors deployed throughout the power grid. This data can
be utilized to monitor the network's condition, identify
potential issues, and optimize the energy flow. IT facilitates
the implementation of automation systems that
automatically respond to changes in the grid, ensuring the
stability and reliability of energy supply. Furthermore, IT
systems enable the development of smart grids (SGs),
which integrate various energy sources, storage systems,
and consumer devices, enabling intelligent energy
management and adaptation to current needs [1]. They also
play a significant role in designing demand management
systems that encourage users to consume energy rationally
based on the grid's current requirements. Energy
management software facilitates easy monitoring of energy
consumption, identification of wasteful areas, and the
implementation of measures to eliminate them.

In today's data-driven world, nearly every process,
program, application, and website generates data. Data
management plays a critical role in computer science and
related fields. The market offers a wide range of data
management tools, and one of them is middleware [2, 3].
Middleware is software that connects different systems and
applications, regardless of their origin, allowing them to
exchange data smoothly. Middleware hides the complex
technical details of communication and system integration
from the user, providing simple and consistent APIs.
Middleware can offer additional features such as user
authentication, access authorization, transaction
management, and event logging, which make it easier for
developers to create applications. Middleware facilitates the
integration of different systems and applications, enabling
them to collaborate and exchange information in a

consistent and efficient manner. Middleware allows for easy
addition of new systems, applications, and components to
existing infrastructure without the need to modify existing
code, which increases the flexibility and scalability of
solutions. These features make middleware a valuable tool
for developers and IT system administrators who want to
create efficient, scalable, and integrated solutions.

User-friendly access to energy management
functionalities within middleware can be achieved through a
well-designed graphical user interface (GUI). Research has
consistently highlighted the benefits of investing in GUI
development [4, 5]. Authors have emphasized the primary
goal of GUI research as understanding user needs and
behaviors to design interfaces that are easy to use, intuitive,
and enjoyable to interact with. A crucial criterion for GUI
design is to enhance user productivity. A well-designed GUI
can empower users to perform tasks more quickly and
efficiently, leading to increased overall productivity.
Additionally, GUI research plays a vital role in identifying
and eliminating potential user errors, thereby enhancing
system safety and reliability. Furthermore, GUI design
considerations can extend to accessibility, ensuring that
interfaces are inclusive and usable by individuals with
disabilities.

The importance of conducting thorough GUI research
has been firmly established in the literature [6, 7]. This
research encompasses a range of methodologies, including
user observation, interviews, usability testing, and other
data collection techniques, to gain insights into how users
interact with interfaces. Psychological experiments and
other scientific methods are also employed to investigate
the impact of various factors on user behavior. Computer
models that simulate user thought processes and actions
are implemented to predict their behavior within the
interface. Additionally, a set of heuristics is employed to
identify potential usability issues.

Databases are the primary data sources for GUIs. The
literature emphasizes that database efficiency is a crucial
criterion when selecting a specific database version. This
criterion is paramount in ensuring faster GUI operation and
responsiveness, enabling the scalability of the IT solution to

114 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 12/2024

handle growing data volumes and user traffic [8]. This, in
turn, leads to reduced IT infrastructure costs. A well-chosen
database also enhances the reliability and stability of IT
systems. Particularly in commercial applications, it elevates
data security and enables more sophisticated data analysis.

This article presents a data management solution
utilizing smartDSM middleware [9]. SmartDSM middleware
is a Java-based software module designed for data
management. The module's primary objective was to
establish a codebase centralizing all CRUD (CREATE,
READ, UPDATE, DELETE) operations within a well-defined
set of classes and interfaces. This facilitates the effortless
implementation of support for additional database engines.
The module's modularity is built upon a reflection
mechanism, eliminating the need for developers or users to
recompile code. The article further delves into the
presentation of energy management-related data on a GUI.

Description of the system based on smartDSM
middleware

Figure 1 illustrates an exemplary system architecture
built upon smartDSM middleware. Each smart appliance
(SA) device runs a local instance of smartDSM middleware.
This software is responsible for implementing measurement
and control functionalities. SmartDSM middleware on the
SA collects data related to energy consumption, for
instance. It can also receive control data, such as
commands to turn on, off, or reduce energy consumption.

Fig.1. Architecture of the system based on smartDSM middleware

Data pertaining to device power consumption, for

instance, is transmitted to the higher-level smartDSM
middleware server via designated variables. Figure 2
illustrates example variable values in JSON format.

Fig. 2. Example variable values for a system based on smartDSM
middleware

Monitoring the operation of individual SAs and the
overall power grid is facilitated by visualizing various energy

parameters on a user terminal using a GUI. SmartDSM
middleware enables the implementation of a universal
service that can operate within the smartDSM middleware
server environment. This service communicates with a
designated server by invoking smartDSM middleware
server layers. The universal service for intelligent devices
facilitates communication between devices and the main
server. A key feature of the smartDSM middleware
environment is its ability to seamlessly integrate new
devices into the existing infrastructure. This necessitated a
configurable and dynamic interface to accommodate newly
added devices. Data from these devices is then channeled
to the created user interface.

Data management in smartDSM middleware

Relational databases are among the most widely
recognized types of databases. NoSQL databases [10]
have emerged as a popular alternative to relational
databases. The vast array of database engines available in
the market can make selecting the right one a challenging
task. This process necessitates careful consideration and
understanding of the key factors that influence effective
data management. Therefore, it is crucial to focus on
various aspects such as performance, security, and ease of
use. However, the abundance of database solutions and
their diverse specifications necessitate narrowing the scope
to a select few engines. This article delves into an analysis
of three database engines: MariaDB, SQLite, and
MongoDB. All three are open-source software, which
implies that they share the inherent benefits of open-source
software, including enhanced security, reliability,
transparency, and performance. Table 1 shows a
comparison of selected features of the three database
engines. The basic features that were compared were the
database type, data structure, transaction support, license
and server.

Table 1. Comparison of selected properties for three database
engines

Feature mariaDB SQLite mongoDB
Database
Type

Relational Relational non-relational

Data
Structure

Tables Tables Documents

Transaction
Support

Yes Yes Yes, since
version 4.0

License Open Source Open Source Open Source
Server
Requirement

Yes No, local base Yes

The selection of a specific database engine is driven by

the project's unique characteristics and requirements for
versatility, performance, and functionality. Each of the
shortlisted engines possesses distinct features and
operational nuances.

The choice of these engines was guided by their diverse
attributes and application possibilities. The primary
objective was to enhance the versatility and performance of
smartDSM middleware. The selected database engines
fulfill these criteria by offering both serverless and server-
based operation, as well as NoSQL database capabilities.
Additionally, the chosen engines enjoy widespread
popularity and meet performance expectations. In the
context of databases, a Database Abstraction Layer (DAL)
serves as an intermediary between an application and
various database systems. It enables developers to write
code independent of the specific database type, facilitating
application portability and enhancing flexibility.

The database module with an abstraction layer
centralizes all database operations in one location,

{ "VOLTAGE": [
 230.12
],
 "ACTIVE_POWER": [
 2026.02
],
 "REACTIVE_POWER": [
 205.04
],
 "FREQUENCY": [
 50.34
],
 "name":
"WASHING_MACHINE",
 "POWER_FACTOR": [
 0.99
],
 "CURRENT": [
 8.85
],

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 12/2024 115

improving code readability and simplifying developer tasks.
A key challenge was ensuring consistent operation across
relational databases (SQLite and MariaDB) and a NoSQL
database (MongoDB). These database types differ in their
query languages, data schemas, and Java drivers,
necessitating the implementation of specialized
programming solutions. The database abstraction layer
proves to be an invaluable tool for developers striving to
create portable, maintainable, and flexible database

systems. Data normalization in a database is also a
significant issue. By eliminating redundancy, normalization
can significantly decrease the size of a database. However,
this reduction may come at the cost of increased read and
write times. In the database implementation discussed in
this article, adding new data to MariaDB, SQLite, and
MongoDB led to respective database size increases of
16.39kB, 4kB, and 4.1kB.

Fig.3. GUI Implementation

Data visualization with smartDSM middleware

To ensure the full functionality of the GUI, a well-
designed and implemented backend is essential. In the
context of smartDSM, these backend programs, referred to
as services, enable connection to the smartDSM
middleware server and execution of predefined
functionalities. Leveraging Java and the Spring Boot
framework for microservice implementation on the backend
facilitated rapid and reliable service creation and data
transmission logic handling. The combination of Vue.js and
Node.js proved instrumental in implementing a responsive
user interface. Vue.js, a popular JavaScript framework,
enabled the creation of a dynamic and interactive UI, while
Node.js, a JavaScript runtime environment, facilitated
server-side rendering and real-time communication
capabilities. The implemented GUI serves as a central hub
for monitoring and controlling the energy network for
connected devices. It provides users with a comprehensive
overview of energy parameters, enabling informed decision-
making and efficient energy management.

The designed GUI provides the required functionalities
[11], including a graphical representation of the network
topology, a clear presentation of energy data, and the ability
to configure the network topology. The applied technologies
ensure the ease of use, performance, and scalability of the
interface. The Chart.js library is used for data visualization,
Bootstrap ensures a responsive design, and Axios
facilitates communication with the server. The Mitt and vue-
native-websocket libraries are responsible for component
reactivity and WebSocket communication, while the Simple
Text Oriented Messaging Protocol JavaScript (STOMP.js)
enables communication using the STOMP protocol. Figure
3 depicts the Vue.js component-based GUI, designed to
display real-time energy data. Each component serves a
specific function, fostering a user-friendly interface.

Experimental results

The database module was validated using 150 unit tests
(50 per database) and 15 load tests (1000 repetitions each).
Average response times for key methods are presented in
Figure 4.

NoSQL databases, particularly MongoDB, demonstrate
superior performance when handling large workloads,
especially those involving the creation of numerous records.

Their engines exhibit comparable efficiency when modifying
large volumes of data with a single command.
Consequently, NoSQL databases emerge as a compelling
choice for applications demanding high performance under
intense load, particularly when frequent record creation is a
primary requirement. However, it is crucial to carefully
consider the specific characteristics of the application and
select the database that best aligns with its needs.

Fig.4. Average execution times of methods

The functionality of the energy network management
application's backend has been verified through a wide
range of tests. The backend components responsible for
generating and saving energy data to the database as well
as reading data from the database and making them
available to the user interface were tested. Tests for the
GUI were carried out using Jest.js and Babel.js libraries.
The main areas of GUI testing included: correct component
rendering, user interaction support, data processing and
communication with the backend.

To further assess the performance of the smartDSM
middleware server, the execution times of selected
database access tasks were evaluated. Six test scenarios
(sc) were defined, each focusing on specific data retrieval
and processing operations. These scenarios (sc1-sc3)
measure the response times for retrieving a single variable
with varying numbers of readings: 10 readings (sc1), 120
readings (sc2), and 365 readings (sc3). These scenarios

116 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 12/2024

represent the retrieval of multiple consecutive variable
values from the smartDSM middleware server. These
scenarios (sc4-sc6) evaluate the time taken to calculate the
total energy consumption for different time intervals: one
hour (sc4), one day (sc5), and one week (sc6). These
scenarios represent internal operations within the
smartDSM middleware server, involving the aggregation of
energy consumption data over specified time periods. The
performance tests were conducted for two cases: 8 SAs
and 45 SAs in a household. This allowed for the evaluation
of performance under varying levels of data complexity.

Figure 5 presents the average response times for
operations executed on the smartDSM middleware server

for households with 8 (8SAx) and 45 (45SAx) SAs,

respectively.

Fig.5. Average response times for operations executed on the
smartDSM middleware server

Based on the results obtained for all scenarios (sc)

depicted in Figure 5, it can be observed that the value of

SAx increases with a growing number of SAs. This
suggests a correlation between the number of SAs and the
overall processing time required for database operations.
Furthermore, the conducted experiments revealed that
performing mathematical operations directly on the
smartDSM middleware server proves to be more efficient
than retrieving individual variable values separately for
subsequent mathematical computations. This highlights the
advantage of minimizing data transfers and utilizing server-
side processing whenever possible.

Conclusions

This article presents the results of implementing a list of
methods for database communication based on the
smartDSM middleware source code. The purpose of these
methods was to provide the ability to perform all CRUD
(Create, Read, Update, Delete) operations.

Based on this list, the required functionalities of the
database module were identified and implemented in Java.
This interface, together with the implemented abstract class
and database classes, forms the core structure of the
database module.

Database connection for relational databases is realized
using JDBC drivers. For the non-relational MongoDB
database, a separate official driver is used. The MongoDB
database class required the adaptation of some methods to
the specific query syntax of MongoDB. The methods that
required this were appropriately adapted, taking into
account the requirement for uniformity between database
engines.

The article also presents the results of implementing the
frontend for the power grid management application. A
client-server architecture was used, where the backend
simulates the operation of devices and collects data. The
GUI interface visualizes the data in charts and a connection
tree. Unit tests were conducted. There is potential for
further development of the application, including adding a
function to view historical data and configure charts.

Acknowledgements

The results of the research presented in this article were
partially realized during the first author's research stay at
the IHP - Leibniz Institute for High Performance
Microelectronics, Germany.

Authors: dr inż. Piotr Powroźnik, Uniwersity of Zielona Góra,
Institute of Metrology, Electronics and Computer Science,
Podgórna 50, 65-246 Zielona Góra, E-mail:
p.powroznik@imei.uz.zgora.pl; inż. Filip Opłotny, Uniwersity of
Zielona Góra, Institute of Metrology, Electronics and Computer
Science, Podgórna 50, 65-246 Zielona Góra; inż. Mateusz
Komarowski, Uniwersity of Zielona Góra, Institute of Metrology,
Electronics and Computer Science, Podgórna 50, 65-246 Zielona
Góra; mgr inż. Igor Koropiecki, IHP - Leibniz-Institut für innovative
Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder),
Germany, E-mail: koropiecki@ihp-microelectronics.com; mgr inż.
Krzysztof Turchan, IHP - Leibniz-Institut für innovative
Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder),
Germany, E-mail: turchan@ihp-microelectronics.com; prof. dr inż.
Krzysztof Piotrowski, IHP - Leibniz-Institut für innovative
Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder),
Germany, E-mail: piotrowski@ihp-microelectronics.com.

REFERENCES
[1] Szcześn iak P . , Powroźn ik P . , Sz ta jmec E . , Selected

voltage control methods in LV local distribution grids with high
penetration of PV. Przegląd Elektrotechniczny, 99 (2023), nr
11, 62-65

[2] Luo Z . , L i D . , Wan J . , Wang S . , Wang G. , Cheng
M. , & L i T . , Component integration manufacturing
middleware for customized production, Advanced Engineering
Informatics, 59 (2024), 102317

[3] Souk i O . , D jemaa R . B . , Amous I . , Sèdes F . , A
Survey of Middlewares for self-adaptation and context-aware in
Cloud of Things environment, Procedia Computer Science, 207
(2022), 2804–2813

[4] Har tson R . , Py la P . S . , The UX Book: Agile UX Design
for a Quality User Experience, Holand: Elsevier Science,
(2018)

[5] Kan tamnen i S . , User Experience Design: A Practical
Playbook to Fuel Business Growth, United Kington: Wiley,
(2022)

[6] A l l anwood G. , Beare P . , User Experience Design: A
Practical Introduction, United Kington: Bloomsbury Publishing,
(2019)

[7] Marsh S . , User Research: Improve Product and Service
Design and Enhance Your UX Research, United
Kington: Kogan Page, (2022)

[8] Ta ipa lus T . , Database management system performance
comparisons: A systematic literature review, Journal of
Systems and Software/the Journal of Systems and Software,
208 (2024), 111872

[9] Korop ieck i I . , P io t rowsk i K . , SmartDSM: Towards User-
Centric IoT Middleware Platform for Privacy-Focused Smart
Systems, IEEE International Conference on Internet of Things
and Intelligence Systems (IoTaIS), Bali Indonesia (2023), 79-84

[10] Mehmood E . , Anees T . , Performance Analysis of Not
Only SQL Semi-Stream Join Using MongoDB for Real-Time
Data Warehousing, IEEE Access, 7 (2019), 134215-134225

[11] X iao F . , Lu T . , A i Q . , Wang X . , Chen X . , Fang S . ,
Wu Q. , Design and Implementation of a Data-Driven
Approach to Visualizing Power Quality, IEEE Transactions on
Smart Grid, 11(5) (2020), 4366 - 4379

