
 

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 11/2024                                                                            237 

Sebastian BORUCKI1, Jerzy SKUBIS2, Daria WOTZKA3, Dariusz ZMARZŁY4 

Opole University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics 
ORCID: 1. 0000-0003-0748-5488; 2. 0000-0002-3723-8034; 3. 0000-0002-8861-7974; 4. 0000-0001-9421-4277 

 
doi:10.15199/48.2024.11.48 

 

Application of machine learning methods for the classification 
of vibroacoustic signals measured at the moment of transformer 

energization with varying degrees of core and winding defect 
complexity 

 
Abstract. The research subject is a power transformer, with the goal of identifying and classifying various technical conditions, including the normal 
state and defects in the core and windings. The aim is to explore various machine learning algorithms, the impact of three different Hamming window 
sizes for spectral estimation (used as the feature set), and the influence of the number of classes in classification. The study confirms the hypothesis 
that it is feasible to effectively identify specific types of transformer defects based on vibroacoustic signals. 
 
Streszczenie. Przedmiotem badań jest transformator mocy, a celem jest identyfikacja i klasyfikacja różnych stanów technicznych, w tym stanu 
normalnego oraz wad rdzenia i uzwojeń. Celem prac jest zbadanie różnych algorytmów uczenia maszynowego, wpływu trzech różnych rozmiarów 
okna Hamminga na estymację spektralną (używaną jako zestaw cech) oraz wpływu liczby klas w klasyfikacji. Badanie potwierdza hipotezę, że 
możliwe jest skuteczne identyfikowanie konkretnych rodzajów wad transformatora na podstawie sygnałów wibroakustycznych.  
(Zastosowanie metod uczenia maszynowego do klasyfikacji sygnałów wibroakustycznych mierzonych w momencie zasilania 
transformatora o różnym stopniu złożoności uszkodzeń jego rdzenia i uzwojeń).  
 
Słowa kluczowe: metoda wibroakustyczna, pomiar drgań, transformator, rdzeń, uzwojenie, klasyfikacja, uczenie maszynowe. 
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Introduction 

In recent years, the modified vibroacoustic method for 
assessing the technical condition of transformer cores and 
windings has been developing rapidly [1-4]. This method is 
gaining popularity due to its precision and reliability in 
damage diagnostics. One of the key aspects of this 
development is evaluating the potential of using selected 
machine learning tools for classifying vibroacoustic signals 
recorded during the transformer's startup. These tools 
enable the recognition of core and/or winding defects of 
varying complexity. The introduction of advanced algorithms 
allows for precise signal analysis, significantly enhancing 
diagnostic effectiveness [5-9]. The next step in refining this 
method is to try to make the process of identifying the 
complexity of mechanical defects in the transformer core 
and/or windings independent of the subjective assessment 
of a diagnostician (expert). Automating this process with 
machine learning tools minimizes the influence of human 
factors and eliminates the risk of errors stemming from 
subjective evaluations. The automation of the fault 
classification process for the active parts of the transformer, 
based on the analysis of vibroacoustic signals measured at 
startup, represents a milestone in transformer diagnostics. 
This allows for quick and efficient fault detection, increasing 
the reliability and safety of these devices. The modified 
vibroacoustic method supported by machine learning tools 
opens new possibilities in the diagnostics of power 
transformers [10-13]. Automation and independence from 
expert subjective assessments are key elements that 
contribute to increasing the efficiency and precision of 
evaluating the technical condition of these critical 
components in the energy infrastructure. 
 The challenge involves the necessity of selecting 
appropriate features and classification methods, as we have 
only a limited amount of training data. The objective is to 
investigate various machine learning algorithms, to examine 
the impact of three different Hamming window sizes for 
spectral estimation, which serves as the feature set for the 
classifier, and to study the influence of the number of 
classes in classification. These classes are related to the 
type of defect, its source, and the transformer's condition, 

representing different levels of diagnostic detail for the 
transformer. 
 
The object under study and the measurement system  

The subject of the research is a power transformer 
manufactured in 1970, which had the following parameters: 
made by Elta Łódź, type TONb-100/20; rated power 100 
kVA; voltage ratio 15/0.4 [kV/kV]; HV current 3.85 [A]; LV 
current 144 [A]; connection group - Yz5. The research task 
aims to identify and classify various technical conditions of 
the transformer, including the normal state and defects in 
the core and windings, by utilizing advanced algorithms and 
machine learning. In the study, two sources of defects were 
considered: winding defects and core defects. Regarding 
winding defects, studies indicate [14-17] that mechanical 
issues in transformer windings, such as deformation, 
displacement, and loosening of clamping force, can 
significantly impact the vibration profile. Analysis of the 
spatial distribution of winding vibrations under various 
loading conditions has shown that these defects lead to 
alterations in the vibration characteristics of the transformer 
tank. Similar to windings, core defects like loosening or 
displacement affect the vibration distribution. Advanced 
signal analysis techniques, such as Fourier transform and 
wavelet analysis, enable the identification and classification 
of these defects, which is crucial for reliable transformer 
diagnostics [18-21]. The visualization of the examined 
device with the marked individual defects is shown in Fig. 1. 

 
 
 
 
 
 
 
 
 

(a) (b) 
 
 

Fig.1. Photo of the examined object with modelled defects: a) 
winding defects, b) core defects. 
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The study investigated 18 different states of the 
transformer's technical condition, including 8 types of 
defects in the no-load condition, 8 types of defects under 
load, and normal operation (without defects) in the no-load 
condition and under load. In each state (idle and under 
load), simulating nine different types of defects, the 
transformer was activated ten times, with vibroacoustic 
signals recorded by four sensors placed in various locations 
and configurations. A total of 720 measurements were 
collected and used for analysis. Measurements from the ten 
activations were combined into a single group, regardless of 
the sensor location, resulting in 80 measurements for each 
defect.  

Table 1 lists the types of modelled conditions. As shown 
in Table 1, the designations are categorized based on the 
number of recognized conditions: D18, D9, D4, and D2. 
Each designation represents a different set of conditions, 
with D18 indicating 16 various defects identified in the 
transformer and 2 no-defect conditions, D9 indicating 8 
defects and 1 no-defect condition, D4 indicating 2 defects 

and 1 no-defect condition, and D2 indicating 2 conditions 
(either a defect exists in the transformer or it does not). This 
classification helps in analysing the impact of varying defect 
quantities on the classification performance. In the case of 
group D9, signals were combined regardless of the 
transformer's state (loaded or unloaded), aiming to 
generalize the diagnosis independently of the operating 
condition. For group D4, signals recorded for different types 
of core damage and winding damage were combined 
separately. For group D2, which represented the highest 
level of generalization, all types of defects were combined 
with signals recorded during defect-free operation. 

The measurement system comprises a setup designed 
to capture and analyse vibroacoustic signals generated 
during the operation of transformers. Fig. 2 shows a general 
view of the four-channel transformer vibration measurement 
system that was used during the research experiment.  
  
 

 

 

 
 
Fig.2. Photo of the test setup.  
 

 
Table 1. Designations of modelled defects depending on the 
number of recognized technical conditions: D18, D9, D4, and D2. 

Type of Modeled Defect 
Number of conditions classified 

D18 
D9 D4 D2 

Load No-load 
Device without defect  LND NND ND ND ND 
Loosened right upper 
core yoke screw 

LCD1 NCD1 CD1 

C 

D 

Loosened right upper and 
left upper core yoke 
screws 

LCD2 NCD2 CD2 

Loosened right upper, left 
upper, and lower left core 
yoke screws 

LCD3 NCD3 CD3 

Loosened right upper, left 
upper, lower left, and 
lower right core yoke 
screws (all core yoke 
screws loosened) 

LCD4 NCD4 CD4 

Loosened winding coil of 
phase L1 

LWD
1 

NWD1 
WD

1 

W 
Loosened winding coils of 
phase L1 and phase L3 

LWD
2 

NWD2 
WD

2 
Loosened winding coils of 
phase L1, phase L2, and 
phase L3 

LWD
3 

NWD3 
WD

3 

All four core yoke screws 
loosened, all winding 
coils of phases L1, L2, 
and L3 loosened 

LCW NCW CW CW 

 
 
 
 

This setup includes sensors for detecting vibrations - 
accelerometers Briel&Kjael type 4514, data acquisition 
hardware to record the signals - system Pulse DynXi 3050, 
and software tools for processing and analysing the data - 
Time Data Recorder by Briel&Kjael. The integration of this 
system into transformer diagnostics involves several key 
components. High-sensitivity accelerometers used to 
capture vibrations from the transformer. These sensors are 
strategically placed to detect signals indicative of potential 
defects. The captured signals are recorded using high-
speed data acquisition hardware – Pulse DynXI measuring 
cassette, type 3050, manufactured by Bruel&Kjael, ensuring 
that the signals are sampled at an appropriate rate to 
capture all relevant details. The load on the tested 100 kVA 
transformer was applied using a second 250 kVA 
transformer (achieved by connecting the 6 kV windings of 
both transformers in series, with the supply to the tested 
transformer being 0.4 kV). The induction of an impulse 
current in the windings of the tested transformer aimed to 
generate vibrations in its windings, proportional to the 
square of the surge current. Due to the impulsive nature of 
the load current, its high rate of change, and the generation 
of an overvoltage wave, the load power was not measured. 
However, it is estimated to be between several dozen to 
several hundred kVAR. 

Example time waveforms of vibroacoustic signals are 
presented in Fig. 3 for: a) signal registered in the no-load 
condition of the transformer, with loosened right upper core 
yoke screw (NCD1) and b) signal registered in the no-load 
condition of the transformer, without any defect (NND). 
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(a) (b) 

Fig.3. Example time series for NCD1(a) and NND (b) device 
operation. 
 
Feature extraction and classification procedure  

In the procedure of feature extraction from recorded 
vibroacoustic signals, spectral components were 
determined. To estimate the power spectral density, the 
method proposed by Peter Welch, which is an improvement 
of the periodogram method, was applied. This method 
involves dividing the signal into several short, overlapping 
segments, which helps reduce the variance of the spectral 
estimate. Each segment is then multiplied by a window 
function to reduce the spectral leakage effect that can occur 
due to the finite length of the segments. The power 
spectrum is calculated for each segment, and then the 
power spectral density estimate is obtained by averaging 
the spectra from all segments. In the study, the Hamming 
window function was used, which has the ability to suppress 
side lobes in the signal spectrum, helping to reduce spectral 
leakage while maintaining the main lobe width at an 
acceptable level. Three different window sizes were 
considered: H1-Hamming (1024), H2-Hamming(512), and 
H3-Hamming(256). The visualization of spectra calculated 
using three windowing methods is shown in Fig. 4 for NCD1 
and NND, respectively. 

 

 
(a) (b) 

Fig.4. Example power spectra estimates: a) NCD1, b) NND. 
 
The classification procedure is illustrated in Fig. 5 as 

flowchart. It illustrates the steps involved in training and 
evaluating machine learning models for classifying 
transformer defects based on vibroacoustic signals. The 
process begins with the collection of measurement data, 
followed by the generation of unique features. The core of 
the process is the Monte Carlo validation, which includes 
100 iterations. Within each iteration, training and testing 
sequences are randomly selected in a 70/30 ratio. The 
machine learning algorithms are then trained and tested, 
and the classification quality metrics are calculated. Finally, 
the best model is selected based on the calculated metrics. 

 

 
 
Fig.5. Flowchart of the machine learning model training and 
evaluation process. 

 
The following machine learning algorithms were applied 

during the research: a decision tree utilizing the Gini 
Impurity splitting criterion with a maximum of 100 splits 
(Tree); an ensemble of 30 decision trees sampled randomly 
with replacement (EnBagT), and sampled using the 
Random Under-Sampling Boosting method (EnBooT), 
aggregated via majority voting; an ensemble of 30 linear 
discriminant classifiers (EnDis); an ensemble of 30 k-
nearest neighbors classifiers with k=1 (EnKnn); a k-nearest 
neighbors algorithm with k=1, utilizing Euclidean distance 
and equal weights (Knn); neural networks with 10 (10xNN), 
100 (100xNN), and 200 (200xNN) neurons in a single 
hidden layer, employing the Rectified Linear Unit activation 
function and a regularization parameter of lambda=0.001; 
and support vector machines with a linear kernel (SvmL), a 
polynomial kernel of degree 2 (SvmQ), and a polynomial 
kernel of degree 3 (SvmC). 

The following evaluation metrics were applied for 
classifier evaluation: accuracy (indicates the ratio of 
correctly predicted observations to the total number of 
observations, can be misleading in cases of imbalanced 
datasets), sensitivity (assesses the model's ability to 
correctly identify positive cases, low value indicates false 
negative cases), specificity (assesses the model's ability to 
correctly identify negative cases, low value indicates false 
positive cases), precision (assesses the model's 
effectiveness in identifying positive results only among the 
cases that the model classified as positive), F1 score 
(represents the harmonic mean of precision and sensitivity, 
effective in imbalanced datasets), Matthews correlation 
coefficient (considers all elements of the confusion matrix).  

Figure 6 and 7 present example results depicting 
boxplots of the six considered classification metrics, where 
each metric is evaluated for four different technical 
conditions of the transformer (D4) in Fig. 6 and for nine 
different technical conditions of the transformer (D9) in Fig. 
7.   

The in Fig. 6 presented boxplots provide the following 
insights. The MCC boxplots show that all technical 
conditions (C, ND, CW, W) have relatively high values, with 
some variation. The C condition tends to have slightly lower 
MCC values compared to the others. The F1 Score 
boxplots demonstrate that all conditions achieve high 
values, with the ND condition slightly outperforming the 
others, indicating a good balance between precision and 
recall across conditions. For Sensitivity, the ND and C 
conditions show higher values, indicating that the classifier 
is particularly good at identifying these conditions. The W 
condition has the widest range of sensitivity values, 
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showing more variability. The boxplots indicate high 
specificity across all conditions, with very little variability, 
suggesting that the classifier is effective at identifying true 
negatives in all cases. The ND condition has the highest 
precision, indicating that when the classifier predicts no 
defect, it is very likely to be correct. Other conditions show 
slightly lower, but still high, precision values. All conditions 
exhibit high accuracy, with the ND condition again showing 
slightly better performance. The C condition shows slightly 
more variability in accuracy. Overall, the boxplots suggest 
that the classification system performs well across all 
technical conditions, with particularly strong performance in 
the ND condition. While there is some variability in 
sensitivity and precision, the metrics indicate a robust 
classification system. The results highlight the system's 
ability to accurately and reliably identify both defective and 
non-defective states of the transformer. 
 

 
 
Fig.6. Example boxplots of the classification metrics for four 
technical conditions (D4), calculated using a neural network with 10 
neurons in the hidden layer.  
  

 
 
Fig.7. Example boxplots of the classification metrics for nine 
technical conditions (D9), calculated using a neural network with 10 
neurons in the hidden layer.  
 
 The analysis of the boxplots presented in Fig. 7 leads to 
the conclusion that overall, the classifier demonstrates 
strong performance across all technical conditions, with 
consistently high values in MCC, F1 Score, Sensitivity, 
Specificity, Precision, and Accuracy. However, it is 
important to note the variability within some metrics. For 
instance, the Sensitivity and Precision metrics show more 
significant fluctuations across different technical conditions. 

To summarize all the conducted research and analyses, 
Figure 8 presents heatmap depicting the arithmetic mean 
values of all calculated classification quality metrics, 
determined over 100 iterations of testing classification 
algorithms for various methods, hamming window sizes, 
and classified condition states: D18, D9, D4 and D2. The 
columns labelled H1 to H3 represent different sizes of the 
Hamming window used for feature extraction, based on 
which transformer technical conditions were classified. 

 

 
 

Fig.8. The arithmetic mean values of all calculated classification 
quality metrics, determined over 100 iterations for various 
algorithms, hamming window sizes, and classified condition states.  

 
Based on the presented aggregate results, the following 

conclusions can be drawn. As the number of classes 
decreases from D18 to D2, the classification accuracy 
generally increases across all algorithms, indicating that 
simpler classification tasks (fewer classes) yield higher 
accuracy. In general, H1 seems to provide slightly higher 
accuracies compared to H2 and H3 for most algorithms, 
although the difference is not very pronounced. Some 
algorithms consistently perform better than others. For 
example, SvmC and SvmQ show high accuracies across all 
conditions, while EnDis and EnKnn show lower accuracies. 
Specific algorithms like 10xNN, 100xNN, and 200xNN 
demonstrate high and consistent performance across 
various window sizes and classification levels. The key 
observations are as follows: the SvmC and SvmQ 
algorithms exhibit robust performance across all window 
sizes and classification levels, suggesting they might be 
more reliable for this type of classification task; the EnDis 
algorithm shows notably lower performance, indicating it 
may not be well-suited for this application; The impact of 
Hamming window size on classification accuracy is present 
but not overly significant, with H1 slightly outperforming H2 
and H3 in many cases. 
 
Conclusions and further research steps 
 The study confirms the hypothesis that it is feasible to 
effectively identify specific types of transformer defects 
based on vibroacoustic signals. Overall, classification 
accuracy tends to improve as the number of classified 
conditions decreases from D18 to D2. Increasing the 
diagnostic accuracy by recognizing more classes with a 
limited number of measurements results in a reduction in 
the average effectiveness. Reducing the window size leads 
to a decrease in the number of details that serve as unique 
features of defects, thereby negatively affecting the overall 
classification accuracy. Among the different Hamming 
window sizes, H1 generally yields slightly better results. The 
highest average accuracy was observed with feature 
window sizes of 1024 (H1) and 512 (H2) when recognizing 
D4 and D9 conditions of the transformer, utilizing neural 
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networks and support vector machines. Algorithms like 
SvmC and SvmQ consistently achieve high accuracy, 
making them favourable choices for classifying transformer 
defects based on vibroacoustic signal analysis. Additionally, 
algorithms such as 10xNN, 100xNN, and 200xNN 
demonstrate strong performance across various Hamming 
window sizes and classification levels. 
 Future research should focus on conducting additional 
measurements in both existing and novel systems that 
simulate defects. Furthermore, calculating and examining 
the impact of new features, such as wavelet transforms and 
spectrograms, on classification effectiveness is essential. It 
is also crucial to validate the developed models under real-
world conditions to ensure their robustness and reliability. 
Finally, implementing the developed model into an expert 
system within the industry will facilitate practical 
applications and enhance defect detection processes. 
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