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Optimization of the polynomial fifth-order interpolation 1P kernel 
in the time domain 

 
 

Abstract. In the first part of this paper, the fifth-order polynomial interpolation convolution one-parameter kernel, is presented. After that, optimization 
of the interpolation kernel in the time domain was performed. The optimization criterion was the minimization of the interpolation error. The 
minimization of the error was realized by choosing the optimal value of the kernel parameter opt. Verification of the correctness of the selection of 
the opt, by experiment was performed. First, test functions with a complex time shape were created. After that, the test functions were interpolated 
using interpolation kernels with some analysed kernel parameters. Interpolation errors are shown using MSE. Finally, by applying a comparative 
analysis, the verification of the choice of the optimal kernel parameter opt was carried out.  
 
Streszczenie. W pierwszej części artykułu zaprezentowano jednoparametrowe jądro splotu interpolacji wielomianowej piątego stopnia. Następnie 
przeprowadzono optymalizację jądra interpolacyjnego w dziedzinie czasu. Kryterium optymalizacji stanowiła minimalizacja błędu interpolacji. 
Minimalizację błędu realizowano poprzez dobór optymalnej wartości parametru jądra opt. Weryfikację poprawności wyboru opt przeprowadzono 
metodą eksperymentalną. W pierwszej kolejności utworzono funkcje testowe o złożonym kształcie czasu. Następnie funkcje testowe interpolowano 
za pomocą jąder interpolacyjnych z niektórymi analizowanymi parametrami jądra. Błędy interpolacji są pokazywane za pomocą MSE. Na koniec, 
stosując analizę porównawczą, przeprowadzono weryfikację wyboru optymalnego parametru jądra opt. (Optymalizacja jądra wielomianowej 
interpolacji piątego rzędu 1P w dziedzinie czasu) 
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Introduction 

In digital signal processing the application of 
interpolation is very current [1]. Spatial transformations 
(rotations, translations, changes image dimensions, 
geometric deformations, etc.) are often performed in digital 
image processing [2, 3]. With these transformations, it is 
necessary to determine the intensity of pixels whose spatial 
coordinates are outside of the grid [4, 5]. These problems 
are solved by applying interpolations in the spatial domain 
[6]. When processing audio signals in the time domain 
(resampling), interpolation is performed in the time domain 
[7]. Audio processing, and especially speech signal 
processing (fundamental frequency estimation), requires 
interpolation in the spectral domain. 

Most often, interpolation should be realized in real-time. 
The application of numerical interpolation formulas 
(Lagrangian, Newtonian, Gaussian, Stirling, Bessel, 
Chebyshev,...) requires knowledge of a large amount of 
data, sometimes the complete signal. For this reason, 
interpolation formulas are often of an impractically large 
order, that is, of great numerical complexity. The 
consequence of the high numerical complexity is an 
impractically long interpolation time. 

In order to increase the speed of interpolation, which is 
a fundamental requirement for application in real-time 
systems, convolutional interpolation is intensively applied. 
Convolutional interpolation is realized by convolution 
between the discrete signal and the continuous interpolation 
kernel. The precision and speed of interpolation are directly 
dependent on the interpolation kernel. Theoretical analysis 
showed that the interpolation kernel, with the time-spatial 
form r = sin(x)/x, is the ideal interpolation kernel for 
interpolating band-limited discrete signals [8]. This kernel is 
referred in the scientific literature as sinc. The spectral 
characteristic of the sinc kernel is in the form of a box 
function. The properties of the box spectral characteristic 
are: a) in the pass-band is flat and equal to one, b) in the 
stop-band is flat and equal to zero, and c) with an ideal 
slope in the transition area [9]. Interpolation sinc kernel is 

defined in the range (-∞ ≤ x ≤ +∞). This fact indicates that it 
is not possible to practically realize the sinc kernel [10]. 

In order to enable the practical realization of the sinc 
kernel, kernel can be truncated to the length L using a 
window. The truncation process is called windovization. 
However, simple kernel windovization leads to negative 
consequences (the spectral characteristic has a ripple in the 
pass-band and stop-band, as well as a finite slope in the 
transition range) which leads to a decrease in the precision 
of the interpolation. In the last thirty years, the current task 
at DSP is the construction of an interpolation kernel using a 
function of low numerical complexity, which will satisfactorily 
approximate sinc on the interval L. The main direction is 
towards the construction of low-order (n  7) polynomial 
kernels [11]. A large number of polynomial kernels have 
been proposed in the scientific literature. Numerically the 
simplest is the polynomial zeroth-order kernel. Interpolation 
is performed by rounding to the nearest-neighbor sample 
[12]. In addition to high execution speed, interpolation with 
this kernel leads to the appearance of a large interpolation 
error e. A linear, polynomial first-order interpolation kernel is 
described in [13]. A cubic, polynomial third-order 
interpolation kernel, is described in [8]. Convolutional 
interpolation using the third-order kernel is more precise 
than the previous two kernels. 

The parameterization of the polynomial third-order 
kernel was proposed by Robert Keys in [8]. By inserting the 
parameter  into the coefficients of the kernel, the 
parameterization is performed. A very significant fact is that, 
by changing the kernel parameter , the kernel can be 
adapted to the specific signal, and, in this way, the 
interpolation precision can be increased. Later, in the 
scientific literature, this kernel, in honor of the author who 
proposed it, the one-parameter Keys (1P Keys) kernel was 
named. In order to further increase the precision of 
interpolation, kernels of the third-order with two parameters 
(2P Keys, parameters  and ) were proposed [14]. A 
further increase in interpolation precision was achieved by 
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constructing a three-parameter (, , γ) 3P Keys kernel 
[15]. A fifth-order polynomial one-parameter interpolation 
kernel is described in [16]. The length of the proposed 
kernel is L = 6. Optimization of the kernel parameter  in 
the spectral domain was performed. The optimization 
criterion was the reduction of ripple of the spectral 
characteristic in pass-band and stop-band. Through the 
optimization process, the optimal kernel parameter,  = 
3/64, was determined. 

This paper presents the results of the optimization of the 
polynomial fifth-order 1P interpolation kernel. The 
optimization was performed in the time domain. The 
optimization criterion is the minimization of the interpolation 
error e. First, the interpolation function g is determined. 
After that, assuming that the function f, which is to be 
interpolated, has at least five continuous derivatives in the 
interval where the interpolation is performed, the 
development of the function f in Taylor series is performed. 
The Taylor series has been expanded to the fifth term. Then 
the interpolation error e = f - g was formed. Finally, the 
minimization of the interpolation error was realized, so that 
the f and interpolated function g agree up to the fifth term in 
the Taylor series expansion. The minimization was 
achieved by choosing the optimal value of the kernel 
parameter among seven kernel parameter values, which, 
potentially, could represent the optimal choice (opt). 

With the aim of verifying the correctness of the choice of 
the optimal kernel parameter opt, an experiment was 
carried out. First, three functions (f1, f2 and f3), which 
represent signals of complex time form, are created. After 
that, the functions are interpolated using the fifth-order 
interpolation 1P kernel. In the 1P kernel the analyzed kernel 
parameters are implemented. After interpolation the 
interpolation errors e were calculated. Based on them, the 
mean squared errors MSE are determined. Comparative 
analysis of MSE showed that opt was correctly determined, 
and, therefore, the verification was performed. The results 
of the experiment are presented using graphs and tables. 
 
 Fifth-order polynomial interpolation 1P kernel. 

In the paper [16] convolutional, one-parameter fifth-
order polynomial interpolation kernel, is described. The 1P 
kernel is defined on the interval (-3, 3) and approximates 
the ideal sinc interpolation kernel. Outside of the interval (-
3, 3) the interpolation kernel is zero. The 1P kernel is 
composed of piecewise fifth-order polynomials, which are 
defined on the subintervals (-3, -2), (-2, -1), (-1,0), (0,1), (1, 
2), and (2,3). Therefore, the length of the kernel is L = 6. 
The kernel r is defined by: 
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where  is the kernel parameter. 
The kernel parameter  directly affects the time-spectral 

characteristics of the 1P kernel. Changing the value of the 

kernel parameter  affects the interpolation precision. By 
minimizing the interpolation error e, it is possible to 
determine the optimal value of the kernel parameter, opt, 
and, in this way, optimize the interpolation kernel r. In the 
paper [16], the optimization of the 1P kernel in the spectral 
domain was performed. As an optimization criterion, the 
condition of eliminating the ripple of the spectral 
characteristic H was set. 

In the rest of this paper, the optimization of the 1P 
kernel, which was performed in the time domain, is 
presented. The optimization criterion was the minimization 
of the interpolation error e. 
 
Optimization of the interpolation 1P kernel  

The interpolation function g(x) is a special type of 
approximation function. Its fundamental property is that it is 
equal to the sampled data, that is, the values of the function 
f(x) in the interpolation nodes. Then g(xk) = f(xk), where 0  
k  N – 1, and N is the total number of interpolation nodes, 
in the segment where the function is interpolated. Let us 
assume that x is a point, in which the interpolation of the 
function f(x) should be performed. Let x be between two 
consecutive interpolation nodes, denoted as xj and xj+1. Let 
s = (x – xj)/h. Then (x – xk)/h = (x - xj + xj - xk)/h = s + j + 
k. The interpolation, that is, the reconstructed function g(x), 
is determined by convolutional interpolation [8] of the 
interpolation function f(x) with the interpolation kernel r: 

(2)     k
k k

k k

x x
g x c r c r s j k

h
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 

  , 

 
where ck is the value of the function f(x) in the interpolation 
k-th node (k-th sample), and h is the sampling increment. 
By developing the sum from (2), the reconstruction function 
can be written as: 

(3)  
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The value of kernel r, for the segment is -3  s < -2, is: 

(4)    5 4 3 22 = 4 6 4r ss s s s s        . 

 
Continuing this procedure, the kernel values in the other 

segments are determined: 

(5) 
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(9)    5 43r s s s     . 

 
Substituting equations (4) – (9) in (3) the interpolation 

function is written in the form: 
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Assuming that the function f(x) has at least five 

continuous derivatives in the interval (xj, xj + 1), then, by 
applying Taylor's theorem, the value of the function in xj + 1 
is calculated. With the earlier condition on the equality of 
the interpolation function g with the function f in the k-th 
interpolation nodes, the coefficients c from (3) are written in 
the form: 

(11) 
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After substituting eq. (11) – (15) in eq. (10), the 

convolutional interpolation function is written in the form: 

(16)    5 4 3 2 5
5 4 3 2 1 0g x a s a s a s a s a s a h       . 

 

where are: 

   
   

   
   

(2) (3)

(4) (1)

(1) (2)

(3

2

) (4 4)

2 3

4

5

3

9 8 11 16

1 4 9 4

48 24

24 10

j j

j j

j j

j j

h h

h h
a

f x f x

f x f x

f x f x

f x f x

h h

h h

 

 

   
 
    
 
  
 
   

, 

 

   
   
   

   

(1) (3)

(4) (1)

(

4

3

4 2 2

3 4

2) (2)

(3) (4)

120 5 4

5 16 45 8

15 8 40

50 46 3

j j

j j

j j

j j

h h

h h
a

f x f x

f x f

h h

h h

x

f x f x

f x f x





 

  
 
    
 
   
 
    

, 

 

   
   

(3) (1)

( 3

3

3 1) ( )3

5 8 15 4

80 76 3

j j

j j

h h
a

h

f x f x

f x fh x

   
 
    

, 

 

   
   

(2) (4)

(2)

2 4

2 2 4 (4)

5 4 5 4

16 16 3

j j

j j

h h
a

h

f x f x

f x h f x 

   
 
    

, 

 

   
   

(3) (1)

(1) (3)

3

1 3

5 48 5 8

8 2 3

j j

j jh

f x f
a

x

f x f

h h

h x

   
 
    

, 

and 

 0 ja f x . 

 
The expansion of the function f into Taylor series is 

obtained: 
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The interpolation error is: 
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where are the coefficients A = 40 -1, B = 384 -11, C = 
64 -3, D = 736 -17, E = 40 -1, F = 608 -11, G = 256 
-5, and H = 32 -5. In order to minimize the interpolation 
error e, it is necessary that the coefficients A, ... , H are as 
small as possible, ideally equal to zero. This can only be 
achieved if the first five terms of the Taylor series expansion 
for f and g are mutually equal, that is, if their difference is as 
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small as possible. However, because the coefficients have 
a common variable, which is the parameter α, it is not 
possible to achieve a unique solution. By equating the 
coefficients A, ... , H to zero, and marking the parameters α 
in the index with the name of the coefficient, it is obtained 
that: αA = 1/40, αB = 11/384, αC = 3/64, αD = 3/736, αE = 
1/40, αF = 11/608, αG = 5/256 and αH = 5/32. 

It is observed that, out of fourteen coefficients (eq. 18), 
the term C = 64α - 3 appears 7 times. In the final calculation 
of the optimal parameter αopt, two important facts should be 

analyzed: a). Mean value of the parameters is   = 1/14 ‧ 
H

zz A


 = 0.0499. The smallest difference between   and 

all other parameters αA, ..., αH is in relation to αC. Their 

difference is ΔαC =   - αC = 0.0499 – 3/64 = 0.0030. b) In 
the paper [15] optimization of the kernel was performed in 
the spectral domain with the criterion of minimizing the 
ripple of the spectral characteristics. The minimum ripple of 
the spectral characteristic is achieved with αopt = 3/64. 
Taking into account the mentioned facts, the conclusion is 
reached that the optimal value of the kernel parameter of 
the interpolation kernel is αopt = αC = 3/64. 

In fig. 1.a shows the time forms of: a) the ideal 
interpolation kernel sinc, and b) the fifth-order polynomial 
kernel, ropt, with the optimal parameter αopt = αC = 3/64, on 
the interval (-3, 3). In fig. 1.b shows the spectral 
characteristics of: a) ideal interpolation kernel Hsinc (length L 
→ ∞), b) windowized ideal kernel Hsincw length L = 6, and c) 
optimized fifth-order kernel Hopt with αopt = 3/64. 

 
a) 

 
b) 

Fig.1. a) Time forms of: the ideal interpolation kernel sinc, and the 
fifth-order polynomial kernel, on the interval (-3, 3); b) Spectral 
characteristics of: ideal interpolation kernel Hsinc (length L → ∞), 
windowized ideal kernel Hsincw length L = 6, and optimized fifth-
order kernel Hopt with αopt = 3/64.  
 
Experimental results and analysis  
Experiment  

In order to verify the precision of interpolation, an 
experiment was carried out. The fifth-order interpolation 1P 
kernel, with implemented all analyzed kernel parameters 
(αA, αB, αC, αD, αE, αF, αG, αH), was used. The interpolation 
error e(x) = f(x) - g(x), for each interpolation, was 
calculated. After that, the mean squared error MSE, which 

is defined as MSE = 1/N ‧ 2

1

N

n
e

 , where N is the number 

of interpolation points, is determined. MSE was used as a 
measure of interpolation precision. A smaller value of MSE 
indicates a higher precision of interpolations. 

The interpolation was carried out over the test signals 
f1(x), f2(x) and f3(x), which are defined as: 

(19) 2
1( ) 1.5 ( ) ( )

2

x x
f x sin sin

 
   , 

(20) 3
2 ( ) 10 ( 10) ( 15) ( 35) ( )
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f x x x x sin


        , 

(21) 2
3( ) (4 )

x x
f x e sin




   . 

Test signals f(x), interpolation functions g(x), and 
interpolation nodes are shown in: fig. 2.a (f1(x)), fig. 3.a 
(f2(x)), and fig. 4.a (f3(x)). The absolute interpolation error 
|e|, for the tested kernel parameters α, on the segment (9, 
10), are shown in: fig 2.b, fig. 3.b, and fig. 4.b. In tbl. 1 
shows MSE for all analyzed kernel parameters, for test 
signals f1(x), f2(x) and f3(x). 

 
a) 

 
b) 

Fig.2. a) Interpolated signal f1(x), interpolation function g1(x) and 
interpolation nodes n. Absolute interpolation error |e| on segment 
(9, 10) for analyzed kernel parameters.  

 
a) 

 
b) 

Fig.3. a) Interpolated signal f2(x), interpolation function g2(x) and 
interpolation nodes n. Absolute interpolation error |e| on segment 
(9, 10) for analyzed kernel parameters. 

 
a) 

 
b) 

Fig.4. a) Interpolated signal f3(x), interpolation function g3(x) and 
interpolation nodes n. Absolute interpolation error |e| on segment 
(9, 10) for analyzed kernel parameters.  
 
Table 1. MSE for the test signal f1(x), f2(x), and f3(x), depending on 
the analyzed kernel parameters.  

MSE f1(x)  f2(x) f3(x) 
MSEC 1.0892‧10-06 5.0582‧10-07 3.7074‧10-05 
MSEA 6.0202‧10-05 5.6243‧10-05 1.6468‧10-04 
MSEB 4.3937‧10-05 4.0200‧10-05 1.3677‧10-04 
MSED 2.0316‧10-04 2.0056‧10-04 3.7626‧10-04 
MSEF 9.8055‧10-05 9.4050‧10-05 2.2485‧10-04 
MSEG 8.9409‧10-05 8.5373‧10-05 2.1153‧10-04 
MSEH 0.0011 0.0012 8.3395‧10-04 

 
Analysis of results 

Based on the results, which are graphically shown in fig. 
2 - fig. 4, and in table 1, it can be concluded that the 
interpolation error MSE, for kernels with analyzed kernel 
parameters (αA , αB, , αD, αE, αF, αG and αH), in relation to 
the kernel with the optimal parameter (αopt = αC), for test 
signals (f1(x), f2(x) and f3(x)) interpolation, is greater: 

a) f1 .. MSEA / MSEC = 6.0202‧10-05 / 1.0892‧10-06 = 
55.3, MSED / MSEC = 4.3937‧10-05 / 1.0892‧10-06 = 40.3, 
MSED / MSEC = 2.0316‧10-04 / 1.0892‧10-06 = 186.5, MSEF / 
MSEC = 9.8055‧10-05 / 1.0892‧10-06 = 90.0, MSEG / MSEC = 
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8.9409‧10-05 / 1.0892‧10-06 = 082.1, MSEH / MSEC = 0.0011 
/ 1.0892‧10-06 = 1009.9 times, respectively, 

b) f2 .. MSEA / MSEC = 5.6243‧10-05 / 5.0582‧10-07 = 
111.2, MSEB / MSEC = 4.0200‧10-05 / 5.0582‧10-07 = 079.5, 
MSED / MSEC = 2.0056‧10-04 / 5.0582‧10-07 = 396.5, MSEF / 
MSEC = 9.4050‧10-05 / 5.0582‧10-07 = 185.9, MSEG / MSEC 
= 8.5373‧10-05 / 5.0582‧10-07 = 168.8, MSEH / MSEC = 
0.0012 / 5.0582‧10-07 = 2372.4 times, respectively, 

c) f3 ..MSEA / MSEC = 1.6468‧10-04 / 3.7074‧10-05 = 
4.4419, MSEB / MSEC = 1.3677‧10-04 / 3.7074‧10-05 = 
3.6891, MSED / MSEC = 3.7626‧10-04 / 3.7074‧10-05 
=10.1489, MSEF / MSEC = 2.2485‧10-04 / 3.7074‧10-05 = 
6.0649, MSEG / MSEC = 2.1153‧10-04 / 3.7074‧10-05 = 
5.7056, MSEH / MSEC = = 8.3395‧10-04 / 3.7074‧10-05 = 
22.4942 times, respectively, 

Taking into account the theoretical analysis, which was 
realized in the time domain, as well as the experimental 
results, it is unequivocally confirmed that the optimal value 
of the kernel parameter αopt = 3/64 is well chosen. 
 
Conclusion 

The paper describes the optimization process of the 
fifth-order polynomial one-parameter interpolation kernel. 
The optimization of the 1P kernel involved the selection of 
the optimal value of the kernel parameter αopt. The 
optimization was realized by minimization of the 
interpolation error e in the time domain. First, the fifth-order 
1P kernel r, which is defined on the interval (-3, 3), is 
described. Then, by applying convolutional interpolation 
between the interpolated function f and the 1P kernel r, the 
interpolation function g is determined. Interpolated function f 
and interpolation function g in interpolation nodes are equal. 
After that, the interpolation error e, in the interval xj < x < 
xj+1, is determined. With the condition that the function f has 
at least five continuous derivatives in the interval (xj, xj+1), 
the interpolation error e is developed in the Taylor series up 
to the fifth term. According to the minimization criterion, it is 
necessary to agree well functions f and g, up to the fifth 
terms. By minimizing the first five terms of the Taylor series 
of the interpolation error e, the optimal value of the kernel 
parameter can be calculated. However, the minimization 
process does not lead to a unique solution for α. Each of 
the five terms of the Taylor series has a coefficient, which 
depends on several members, which are represented in the 
form (a‧α + b). All five coefficients have a total of fourteen 
such members, of which the form (64‧α - 3) appears seven 
times. Therefore, the value α = 3/64 is imposed as the 

optimal value. The mean value  = 0.0499 is the closest 
value of α = 3/64. In addition, α = 3/64 is equal to the value 
of the optimal kernel parameter, which was determined by 
optimization in the spectral domain, when the optimization 
criterion was the minimization of the ripple of the spectral 
characteristic. Therefore, after detailed analysis, the optimal 
value is αopt = 3/64 is proposed. By using an experiment, 
the verification of the proposed optimal value of the kernel 
parameter was realized. Three test signals, with complex 
time forms, were created. Each test signal was interpolated 
by convolutional interpolation, where an interpolation kernel, 
in which all the analyzed values of the kernel parameter α 
were individually implemented, was used. For each 
interpolation, the interpolation errors were calculated, and, 
based on them, the MSEs, which were used for 
comparative analysis, were formed. A detailed comparative 
analysis showed that the precision of interpolation, with the 

kernel parameter α = 3/64, compared to the precision of the 
other analyzed values of the kernel parameters, is the 
highest. In this way, the suggested optimal values were 
verified. 
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