Department of Electrical Engineering, University of Nigeria, Nsukka, Enugu State, Nigeria(2)

Modelling and Analysis of Five-Phase Permanent Magnet Synchronous Motor in Machine Variables

Abstract

The direct-phase variables (DPV) model of a five-phase permanent magnet synchronous motor is developed, presenting a more detailed set of equations for the motor in machine variables. The developed DPV model is simulated in MATLAB/Simulink to observe the characteristics response of speed and torque. The results were directly compared with a similar model developed in Ansys Maxwell Finite Element Analysis (FEA) software. Comparable results were obtained thereby validating the accuracy of the DPV Model.

Streszczenie. Przedstawiono model pięciofazowego silnika synchronicznego z magnesami trwałymi. Model analizowano z wykorzystaniem programów Matlab/Simulink. Wyniki są zbliżone do modeloewania ptrzy wykorzystaniu programu Ansys Maxwell Finite Element Analysis (FEA). Modelowanie i analiza pięciofazowego silnika synchronicznego z magnesami trwałymi

Keywords: PMSM, finite element analysis (FEA), direct phase variable (DPV), direct-on-line
Słowa kluczowe: silnik pięciofazowy, PMSM, metoda elementów skończonych,.

Introduction

The advantages of permanent magnet (PM) machines and it decreasing cost have seen increase in its designed and utilisation for optimum performance. Among these advantages includes high efficiency, high power factor, high power density and ease of control [1,2,3,4,5]. The utilization of power electronics and drives systems has helped in improving machine performance as multi-phase and advanced switching configurations can be employed. Despite these advantages of PM machines, the high cost of permanent magnet has greatly limited its use to where the advantages outweigh the cost [6], as can be seen in its usage in aviation industries [7, 8], maritime industries [9, 10] and road transportation system [1,11].

The utilization of the multi-phase system has shown some important benefits, including higher torque performance, better faults tolerance [12] as evidence in the use of five-phase models $[3,13,14]$ and the use of dual stator windings [15].

Considering the fact that the use of a five-phase system shows a better performance and greater efficiency as compared to the three-phase system [16], much is expected of the five-phase permanent magnet synchronous motor (PMSM).

The use of the phase variable model is considered essential in predicting the machine performance during faults and unbalanced conditions [16]. The phase variable model accounts for the machine parameters while avoiding the transformation of these parameters to avoid the dependency of inductances on rotor position [9, 10].

The work in [17], presented more detailed equations for the voltage and the torque in machine variables for the three-phase permanent magnet machine, and also can
serve as a basis for the modelling of other multi-phase machines.

The present study models and analyses a five-phase Permanent Magnet Synchronous Motor (PMSM) using machine variables equations for voltages and torque, while considering its torque and speed characteristic performance during start, unloaded and when loaded. The finite element analysis (FEA) model of the 5-phase PMSM is used to validate speed and torque characteristics from start to synchronous speed and when loaded.

Phase variable model of five-phase permanent magnet synchronous motor

The voltage equation for a five-phase permanent magnet synchronous motor (PMSM) can be represented as in equation (1).

$$
\begin{equation*}
V_{5}=R_{5} I_{5}+p \lambda_{5} \tag{1}
\end{equation*}
$$

where,

$$
\begin{equation*}
p=\frac{d}{d t} \tag{2}
\end{equation*}
$$

λ_{5} is the flux linkage, V_{5} is the voltage matrix, R_{5} is the resistance matrix and I_{5} is the current matrix. Equation (3) presents the voltage equation of the stator circuit, but can be adapted to accommodate the rotor circuit.

$$
\begin{equation*}
V_{5}=R_{5} I_{5}+p\left(L\left(\theta_{r}\right) I_{5}\right) \tag{3}
\end{equation*}
$$

$$
\text { (4) } L\left(\theta_{r}\right) p I_{5}=V_{5}-\left(I_{5}\left\{R_{5}+\left(\frac{d\left\{L\left(\theta_{r}\right)\right\}}{d \theta_{r}}\right) \omega_{r}\right\}+\left(\frac{d\left\{\lambda_{m 5}\left(\theta_{r}\right)\right\}}{d \theta_{r}}\right) \omega_{r}\right)
$$

(5) $p I_{5}=L\left(\theta_{r}\right)^{-1}\left(V_{5}-\left(\left\{R_{5}+\omega_{r}\left(\frac{d\left\{L\left(\theta_{r}\right)\right\}}{d \theta_{r}}\right)\right\} I_{5}+\left(\frac{d\left\{\lambda_{m 5}\left(\theta_{r}\right)\right\}}{d \theta_{r}}\right) \omega_{r}\right)\right)$

$$
\begin{equation*}
\omega_{r}=\frac{d \theta_{r}}{d t} \tag{6}
\end{equation*}
$$

The stator voltage equation for a five-phase PMSM can be written as in equation (7). The five-phase variables under consideration are phases $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ and e .
(7) $\quad V_{s 5}=R_{s 5} I_{s 5}+p\left(L_{s 55} I_{s 5}\right)+p\left(\lambda_{m 5 s}\right)$

$$
\begin{equation*}
L_{s 5}=L_{l s} I+L_{A 5} M_{a 5}+L_{B} M_{b 5} \tag{11}
\end{equation*}
$$

where,
(8) $\quad R_{s 5}=\left[\begin{array}{ccccc}r_{a s} & 0 & 0 & 0 & 0 \\ 0 & r_{b s} & 0 & 0 & 0 \\ 0 & 0 & r_{c s} & 0 & 0 \\ 0 & 0 & 0 & r_{d s} & 0 \\ 0 & 0 & 0 & 0 & r_{e s}\end{array}\right]$
(9) $\quad I_{s 5}=\left[\begin{array}{lllll}i_{a s} & i_{b s} & i_{c s} & i_{d s} & i_{e s}\end{array}\right]^{T}$
(10) $\quad V_{s 5}=\left[\begin{array}{lllll}v_{a s} & v_{b s} & v_{c s} & v_{d s} & v_{e s}\end{array}\right]^{T}$

$$
{ }^{(12)} M_{a 5}=\left[\begin{array}{ccccc}
1 & \cos \left(\frac{2 \pi}{5}\right) & \cos \left(\frac{4 \pi}{5}\right) & \cos \left(\frac{4 \pi}{5}\right) & \cos \left(\frac{2 \pi}{5}\right) \\
\cos \left(\frac{2 \pi}{5}\right) & 1 & \cos \left(\frac{2 \pi}{5}\right) & \cos \left(\frac{4 \pi}{5}\right) & \cos \left(\frac{4 \pi}{5}\right) \\
\cos \left(\frac{4 \pi}{5}\right) & \cos \left(\frac{2 \pi}{5}\right) & 1 & \cos \left(\frac{2 \pi}{5}\right) & \cos \left(\frac{4 \pi}{5}\right) \\
\cos \left(\frac{4 \pi}{5}\right) & \cos \left(\frac{4 \pi}{5}\right) & \cos \left(\frac{2 \pi}{5}\right) & 1 & \cos \left(\frac{2 \pi}{5}\right) \\
\cos \left(\frac{2 \pi}{5}\right) & \cos \left(\frac{4 \pi}{5}\right) & \cos \left(\frac{4 \pi}{5}\right) & \cos \left(\frac{2 \pi}{5}\right) & 1
\end{array}\right]
$$

(13)

$$
M_{b 5}=\left[\begin{array}{ccccc}
\cos \left(2 \theta_{r}\right) & \cos \left(2 \theta_{r}-\frac{2 \pi}{5}\right) & \cos \left(2 \theta_{r}-\frac{4 \pi}{5}\right) & \cos \left(2 \theta_{r}+\frac{4 \pi}{5}\right) & \cos \left(2 \theta_{r}+\frac{2 \pi}{5}\right) \\
\cos \left(2 \theta_{r}-\frac{2 \pi}{5}\right) & \cos \left(2 \theta_{r}-\frac{4 \pi}{5}\right) & \cos \left(2 \theta_{r}+\frac{4 \pi}{5}\right) & \cos \left(2 \theta_{r}+\frac{2 \pi}{5}\right) & \cos \left(2 \theta_{r}\right) \\
\cos \left(2 \theta_{r}-\frac{4 \pi}{5}\right) & \cos \left(2 \theta_{r}+\frac{4 \pi}{5}\right) & \cos \left(2 \theta_{r}+\frac{2 \pi}{5}\right) & \cos \left(2 \theta_{r}\right) & \cos \left(2 \theta_{r}-\frac{2 \pi}{5}\right) \\
\cos \left(2 \theta_{r}+\frac{4 \pi}{5}\right) & \cos \left(2 \theta_{r}+\frac{2 \pi}{5}\right) & \cos \left(2 \theta_{r}\right) & \cos \left(2 \theta_{r}-\frac{2 \pi}{5}\right) & \cos \left(2 \theta_{r}-\frac{4 \pi}{5}\right) \\
\cos \left(2 \theta_{r}+\frac{2 \pi}{5}\right) & \cos \left(2 \theta_{r}\right) & \cos \left(2 \theta_{r}-\frac{2 \pi}{5}\right) & \cos \left(2 \theta_{r}-\frac{4 \pi}{5}\right) & \cos \left(2 \theta_{r}+\frac{4 \pi}{5}\right)
\end{array}\right]
$$

$$
\lambda_{m 5 s}^{\prime}=\lambda_{m}\left[\begin{array}{c}
\cos \theta_{r} \tag{14}\\
\cos \left(\theta_{r}-\frac{2 \pi}{5}\right) \\
\cos \left(\theta_{r}-\frac{4 \pi}{5}\right) \\
\cos \left(\theta_{r}+\frac{4 \pi}{5}\right) \\
\cos \left(\theta_{r}+\frac{2 \pi}{5}\right)
\end{array}\right]
$$

(15) $\left[\begin{array}{c}v_{s 5} \\ v_{q d r}^{\prime}\end{array}\right]=\left[\begin{array}{cc}R_{s 3}+p L_{s s 5}\left(\theta_{r}\right) & p L_{5 s r}^{\prime}\left(\theta_{r}\right) \\ \frac{2}{5}\left(p L_{5 s r}^{\prime}\left(\theta_{r}\right)\right)^{T} & R_{q d r}+p L_{r}^{\prime}\left(\theta_{r}\right)\end{array}\right]\left[\begin{array}{c}i_{s 5} \\ i_{q d r}^{\prime}\end{array}\right]+$

$$
p\left[\begin{array}{c}
\lambda_{m 5 s} \\
\lambda_{m 5 q d r}^{\prime}
\end{array}\right]
$$

where,

$$
\lambda_{m 5 q d r}^{\prime}=\lambda_{m}\left[\begin{array}{l}
1 \tag{16}\\
0
\end{array}\right]
$$

Referring the rotor parameter to the stator, the voltage equation is given in equation (15).

$$
\lambda_{5 s r}^{\prime}=\left[\begin{array}{cc}
L_{m q} \cos \theta_{r} & L_{m d} \sin \theta_{r} \tag{17}\\
L_{m q} \cos \left(\theta_{r}-\frac{2 \pi}{5}\right) & L_{m d} \sin \left(\theta_{r}-\frac{2 \pi}{5}\right) \\
L_{m q} \cos \left(\theta_{r}-\frac{4 \pi}{5}\right) & L_{m d} \sin \left(\theta_{r}-\frac{4 \pi}{5}\right) \\
L_{m q} \cos \left(\theta_{r}+\frac{4 \pi}{5}\right) & L_{m d}\left(\theta_{r}+\frac{4 \pi}{5}\right) \\
L_{m q} \cos \left(\theta_{r}+\frac{2 \pi}{5}\right) & L_{m d} \sin \left(\theta_{r}+\frac{2 \pi}{5}\right)
\end{array}\right]\left[\begin{array}{l}
i_{i r}^{\prime} \\
i_{d r}^{\prime}
\end{array}\right]+\lambda_{m}\left[\begin{array}{c}
\cos \theta_{r} \\
\cos \left(\theta_{r}-\frac{2 \pi}{5}\right) \\
\cos \left(\theta_{r}-\frac{4 \pi}{5}\right) \\
\cos \left(\theta_{r}+\frac{4 \pi}{5}\right) \\
\cos \left(\theta_{r}+\frac{2 \pi}{5}\right)
\end{array}\right]
$$

Alternatively, a fictitious voltage from the permanent magnet, v_{m}, having a magnetizing current $i_{m r}^{\prime}$ supporting the rotor q-axis flux, equivalent to a damper winding in the rotor q-axis and a damper winding in the d-axis and a permanent magnet, supporting the q-axis flux. The permanent magnet equivalent magnetizing inductance is represented as L_{m}, and equation (17) is re-casted as in equation (18).

$$
\lambda_{5 s r}^{\prime}=\left[\begin{array}{ccc}
L_{m q} \cos \theta_{r} & L_{m d} \sin \theta_{r} & L_{m} \cos \theta_{r} \tag{18}\\
L_{m q} \cos \left(\theta_{r}-\frac{2 \pi}{5}\right) & L_{m d} \sin \left(\theta_{r}-\frac{2 \pi}{5}\right) & L_{m} \cos \left(\theta_{r}-\frac{2 \pi}{5}\right) \\
L_{m q} \cos \left(\theta_{r}-\frac{4 \pi}{5}\right) & L_{m d} \sin \left(\theta_{r}-\frac{4 \pi}{5}\right) & L_{m} \cos \left(\theta_{r}-\frac{4 \pi}{5}\right) \\
L_{m q} \cos \left(\theta_{r}+\frac{4 \pi}{5}\right) & L_{m d} \sin \left(\theta_{r}+\frac{4 \pi}{5}\right) & L_{m} \cos \left(\theta_{r}+\frac{4 \pi}{5}\right) \\
L_{m q} \cos \left(\theta_{r}+\frac{2 \pi}{5}\right) & L_{m d} \sin \left(\theta_{r}+\frac{2 \pi}{5}\right) & L_{m} \cos \left(\theta_{r}+\frac{2 \pi}{5}\right)
\end{array}\right]\left[\begin{array}{l}
i_{q r}^{\prime} \\
i_{d r}^{\prime} \\
i_{m r}^{\prime}
\end{array}\right]
$$

where,
(19) $\lambda_{m}=L_{m} i_{m r}^{\prime}$

Thus for the 5-ph PMSM,
(20)
(21)

$$
\begin{aligned}
& L\left(\theta_{r}\right)=\left[\begin{array}{cccc}
L_{s s} & L_{s r}^{\prime} \\
\frac{2}{5}\left(L_{s r}^{\prime}\right)^{T} & L_{r}^{\prime}
\end{array}\right] \\
& {\left[\begin{array}{cllll}
L_{\text {asas }} & L_{\text {asbs }} & L_{a s c s} & L_{\text {asds }} & L_{\text {ases }} \\
L_{b s a s} & L_{b s b s} & L_{b s c s} & L_{b s d s} & L_{b s e s} \\
L_{c s a s} & L_{c s b s} & L_{c s c s} & L_{c s d s} & L_{c s e s} \\
L_{\text {dsas }} & L_{d s b s} & L_{d s c s} & L_{d s d s} & L_{d s e s} \\
L_{\text {esas }} & L_{e s b s} & L_{e s c s} & L_{e s d s} & L_{\text {eses }}
\end{array}\right]}
\end{aligned}
$$

(22)

$$
L_{r}^{\prime}=\left[\begin{array}{cc}
L_{l k q}^{\prime} & 0 \\
0 & L_{l k d}^{\prime}+L_{m d}
\end{array}\right]
$$

$$
L_{5 s r}^{\prime}=\left[\begin{array}{cc}
L_{m q} \cos \theta_{r} & L_{m d} \sin \theta_{r} \\
L_{m q} \cos \left(\theta_{r}-\frac{2 \pi}{5}\right) & L_{m d} \sin \left(\theta_{r}-\frac{2 \pi}{5}\right) \\
L_{m q} \cos \left(\theta_{r}-\frac{4 \pi}{5}\right) & L_{m d} \sin \left(\theta_{r}-\frac{4 \pi}{5}\right) \\
L_{m q} \cos \left(\theta_{r}+\frac{4 \pi}{5}\right) & L_{m d} \sin \left(\theta_{r}+\frac{4 \pi}{5}\right) \\
L_{m q} \cos \left(\theta_{r}+\frac{2 \pi}{5}\right) & L_{m d} \sin \left(\theta_{r}+\frac{2 \pi}{5}\right)
\end{array}\right]
$$

where $L_{\text {ss }}$ is the stator inductance matrix, L_{r}^{\prime} is the rotor inductance matrix referred to the stator and $L_{5 s r}^{\prime}$ is the mutual inductances between the stator and the rotor referred to the stator.

$$
R=\left[\begin{array}{ccccccc}
R_{a s} & 0 & 0 & 0 & 0 & 0 & 0 \tag{24}\\
0 & R_{b s} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_{c s} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & R_{d s} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & R_{e s} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & R_{k q} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & R_{k d}
\end{array}\right]
$$

R is the resistance matrix. The electromagnetic torque is given in equation (25)

$$
\begin{array}{r}
\quad T_{e}=\left(\frac{p}{2}\right)\left(\frac{1}{2} I_{s}^{T} \frac{\partial\left\{L_{s s}\left(\theta_{r}\right)\right\}}{\partial \theta_{r}} I_{s}+\right. \tag{25}\\
\left.+I_{s}^{T}\left\{\frac{\partial\left\{L_{s r}\left(\theta_{r}\right)\right\}}{\partial \theta_{r}} I_{r}+\frac{\partial\left\{\lambda_{m s x}\left(\theta_{r}\right)\right\}}{\partial \theta_{r}}\right\}\right)
\end{array}
$$

${ }^{(26)} T_{e}=\left(\frac{p}{2}\right)\binom{-L_{B}\left\{\left(i_{a s}^{2}+2\left(i_{b s} i_{e s}+i_{c s} i_{d s}\right)+A_{1} \cos \frac{4 \pi}{5}+B_{1} \cos \frac{2 \pi}{5} \sin 2\left(\theta_{r}\right)+\left(A_{2} \sin \frac{4 \pi}{5}+B_{2} \sin \frac{2 \pi}{5}\right) \cos 2\left(\theta_{r}\right)\right\}-\right.}{\left\{\left(L_{m q} i_{a r}^{\prime}+\lambda_{m}\right)\left(\left(i_{a s}+C_{1}\right) \sin \theta_{r}+D_{1} \cos \theta_{r}\right)+\left(L_{m d} i_{d r}^{\prime}\right)\left(\left(i_{a s}+C_{1}\right) \cos \theta_{r}-D_{1} \sin \theta_{r}\right)\right\}}$
where;
(27) $L_{B}=\left(\frac{2}{25}\right)\left(L_{m q}-L_{m d}\right)$
(28) $A_{1}=\left(i_{b s}^{2}+i_{e s}^{2}+2\left\{i_{a s} i_{c s}+i_{a s} i_{d s}+i_{b s} i_{c s}+i_{d s} i_{e s}\right\}\right)$
(29) $A_{2}=\left(-i_{b s}^{2}+i_{e s}^{2}+2\left\{-i_{a s} i_{c s}+i_{a s} i_{d s}+i_{b s} i_{c s}-i_{d s} i_{e s}\right\}\right)$
(30) $B_{1}=\left(i_{c s}^{2}+i_{d s}^{2}+2\left\{i_{a s} i_{b s}+i_{a s} i_{e s}+i_{b s} i_{d s}+i_{c s} i_{e s}\right\}\right)$
(31) $B_{2}=\left(i_{c s}^{2}-i_{d s}^{2}+2\left\{-i_{a s} i_{b s}+i_{a s} i_{e s}+i_{b s} i_{d s}-i_{c s} i^{e s}\right\}\right)$
(32) $C_{1}=\left(\left(i_{b s}+i_{e s}\right) \cos \frac{2 \pi}{5}+\left(i_{c s}+i_{d s}\right) \cos \frac{4 \pi}{5}\right)$
(33) $D_{1}=\left(\left(-i_{b s}+i_{e s}\right) \sin \frac{2 \pi}{5}+\left(-i_{c s}+i_{d s}\right) \sin \frac{4 \pi}{5}\right)$
(34) $I_{r}=\left[\begin{array}{ll}I_{q r} & I_{d r}\end{array}\right]^{T}$

Neglecting the damping coefficient associated with the rotational system of the machine and the mechanical load [14], equation (35) gives the torque equation for motor action.
(35) $T_{e}=J\left(\frac{P}{2}\right) \frac{d \omega_{r}}{d t}+T_{l}$
where,
I_{s} is the stator current matrix and I_{r} is the rotor current matrix, J is the inertia expressed in kilogram metre ${ }^{2}$ (kgm^{2}) or joule-seconds ${ }^{2}\left(\mathrm{~J} . \mathrm{s}^{2}\right), T_{l}$ is the load torque in $\mathrm{N}-\mathrm{m}$, while P is the no of poles of the machine.

Simulation of the Dynamic Process

A PMSM modelled and simulated using the machine parameters of Table 1. Also, Fig. 1 shows the ANSYS Maxwell model, highlighting the winding arrangement for the five phase PMSM.

Table 1. PMSM dimensions and circuit parameters

Quantities	Value	Quantities	Value
Stator outer / inner radius	$105.02 / 68.09 \mathrm{~mm}$	Number of poles	4
Rotor radius	67.69 mm	Frequency	50 Hz
Effective stack length	120.00 mm	Stator resistance, R_{s}	1.38Ω
Number of Stator slots	40	moment of inertia, J	$0.00894 \mathrm{~kg} / \mathrm{m} 2$
Number of turns	48	Rotor q-axis leakage inductance, $L_{l q r}$	8.2 mH,
Number of Rotor slots	32	Rotor d-axis leakage inductance, $L_{l d r}$	5.5 mH
Phase voltage, V5 ph	370 v	Rotor q-axis resistance, $R_{q r}$	0.25Ω
Stator slot depth	12 mm	Rotor d-axis resistance, $R_{d r}$	0.12Ω
Mutual flux linkage, $\lambda_{5 \mathrm{~m}}$	$0.03707 \mathrm{~V} . \mathrm{s}$	Stator leakage inductance, $L_{l s}$	19.00 mH

Fig .1. Figure showing winding layout for the PMSM

The FEA and the DPV models were simulated to study, the speed and the torque characteristics at start and subsequent 5 Nm loading.

The machine speed for the two models are presented in Fig.2, showing a higher transient speed value of 1924 rpm at start for the DPV model as compared to a speed value of 1738 rpm for the FEA Model.

After the initial starting transients, the DPV modelled machine reached synchronism at 0.37 seconds as compared to synchronism time of 0.35 seconds for the FEA model. The speed transient at loading for the two models shows a greater drop in speed value for the DPV model to a value of 1440 rpm as compared to that of the FEA having a value of 1471 rpm . A value of 1515 rpm above the synchronous speed is also observed for the DPV model as compared to the speed value of 1504 rpm for the FEA model. The speed characteristic showing transient at loading is presented in Fig. 3. Upon application of the 5 Nm load at 0.45 seconds, the FEA model settled at 0.58 seconds while the DPV settled at 0.62 seconds.
The simulated machine torque characteristics for the developed DPV and the FEA models are presented in Fig.4. The torque characteristics of the machine shows a higher torque value of 165.2 Nm for the FEA model at 0.009 seconds as compared to a torque value of 145.7 at 0.0095 seconds for the DPV model.

Fig 2. 5-ph PMSM Speed Characteristics (with 5 Nm load Torque at 0.45 seconds).

Fig. 3. 5-ph PMSM Speed Characteristics (Showing transient at loading)

Fig.4. 5-ph PMSM Torque Characteristics (with 5Nm load Torque at 0.45 seconds)

Conclusion

In this paper, the five-phase permanent magnet synchronous motor has been modelled and analysed by presenting it voltage and torque equations in machine variables. The machine has been analysed using MATLAB/SIMULINK with consideration to the speed and torque performance characteristics at start and loading. The DPV has been used to clearly avoid the complexity of transformation of the stator inductances aimed at removing its dependence on the rotor position.

A 9.64\% difference for the two models is observed for the maximum speed transient value, while an 11.8% difference is observed for the maximum transient torque. On loading, the maximum transient oscillating value of 0.83% is recorded for the FEA model, while a maximum oscillating value of 1.5% is recorded for the DPV model about the average load value. The developed model can also be modified to accommodate the third harmonics of the air-gap MMF, anticipating more accurate results.

Results show that the developed DPV model, which is simple due to the avoidance of transformations, is suitable to represent the characteristics of the machine. This is because the results obtained from the DPV model favourably compare with the results of the FEA model which is a more accurate representation of actual machine. Finally, it is worth mentioning that the developed DPV model can serve as a basis for the further development of other multi-phase machines and also contribute better understanding of the direct-phase variable modelling.

Acknowledgments

Prof. E. S. Obe is grateful to TETFund for sponsoring this research through the research project no. TETFUND/DESS/UNI/NSUKKA/2018/RP/VOL.I.

Authors: Engr. Dr. Gideon Umoh, Department of Electrical Engineering, Maritime Academy of Nigeria, Oron, Akwa-Ibom State, Nigeria, E-mail: umoh.gideon@gmail.com; Engr. Dr. Cosmas Ogbuka (Corresponding Author), Department of Electrical Engineering, University of Nigeria, Nsukka, Enugu State, Nigeria, E-mail: cosmas.ogbuka@unn.edu.ng; Engr. Prof. Emeka Obe, Department of Electrical Engineering, University of Nigeria, Nsukka, Enugu State, Nigeria, E-mail: simon.obe@unn.edu.ng

REFERENCES

[1] Mahmoudi A., Kahourzade S., Rahim N., Ping H., Improvement to Performance of Solid-Rotor-Ringed Line-Start PermanentMagnet Motor, Progress in Electromagnetics Research, 124 (2012), 383-404

2] Ogbuka C., Nwosu C., Agu M., A Fast Hysteresis CurrentControlled Permanent Magnet Synchronous Motor Drive Based on Field Orientation, Journal of Electrical Engineering, 67 (2016), No. 2, 69-77
[3] Zhao P., Yang G., Torque Desity Improvement of Five-Phase PMSM Drive for Electric Vehicles Applications, Journal of Power Electronics, 11(2011), 401-407
[4] Ogbuka C., Nwosu M., Agu M., Dynamic and Steady State Performance Comparison of Line-Start Permanent Magnet Synchronous Motors with Interior and Surface Rotor Magnets, Archives of Electrical Engineering, 65 (2016), No.1, 105-116
[5] Popenda A. A Concept of Control of PMSM Angular Velocity, Przegląd Elektrotechniczny, 89 (2013), No. 12, 290-292
[6] Martinez D, Design of a Permanent-Magnet Synchronous Machine with NonOverlapping Concentrated Windings (for the Shell Eco Marathon Urban Prototype), Royal Institute of Technology, Stockholm, 2012
[7] Gerada C., Bradley K., Integrated PM Machine Design for an Aircraft EMA, IEEE Trasactions on Industrial Electronics, 55 (2008), No. 9, 3300-3306.
[8] Burrow S., Mellor P., Churn P., Sawata T., Holme M., Sensorless Operation of a Permanent Magnet Generator for Aircraft, IEEE Transaction on Industrial application, 44(2008), No. 1, 101-107.
[9] Benelghali S., Mekri F., Benbouzid M., Charpentier J., Performance Comparison of Three and Five-Phase Permanent Magnet Generators for Marine Current Turbine Applications under open-circuit faults, International Conference on Power Engineering, Energy and Electrical Drives, Spain, May, 2011.
[10] Ilka R., Gholamian A., Optimimum Design of a Five-Phase Permanent Magnet Synchronous Motor for Underwater Vehicle by use of Particle Swarm Optimization, Journal of Advances in Computer Research, 3 (2012), No. 3, 9-18
[11] Ilka R., Gholamian A., Optimimum Design of a Five-Phase Permanent Magnet Synchronous Motor for Underwater Vehicle by use of Particle Swarm Optimization, Journal of Advances in Computer Research, 3 (2012) No. 3, 9-18
[12] Kesraoui H., Echeikh H., Iqbal A., Mimouni M., Five-Phase Permanent Magnetic Synchronous Motor Fed by Fault Tolerant Five-Phase Voltage Source Inverter, International Journal of Electrical and Computer Engineering, 6(2016), No.5,1994-2004
[13] Toliyat H., Xu L., Lipo, A., A Five-Phase Reluctance Motor with High Specific Torque, IEEE Trans. on Industry Applications, 28(1992), No. 3, 659-667
[14] Parsa L., Toliyat., H., Five Phase Permanent Magnet Motor Drives, IEEE Transaction on Industry Applications, 41(2005), No. 1, 30-37.
[15] Wu Z., An Investigation of Dual Stator Winding Induction Machines, A Ph.D Dissertation of Tennesse Technological University, Tennesse, 2006.
[16] Umoh G, Obe E., Five-Phase Synchronous Reluctance Motor: A better alternative to the three phase Synchronous motor, In ICEPENG 2015 International Conference, Nsukka, 2015
[17] Krause P., Wasynczuk O., Sudhoff S., Pekarek S., Analysis of Electric Machinery and Drives Systems, USA, John Wiley \& Sons Inc., 2013

