No/VOL: 12a/2012 Page no. 131
Authors: Ewelina Majda , Andrzej Dobrowolski :
Title: Modelowanie i optymalizacja generatora cech dla systemu rozpoznawania mówcy
Abstract: W referacie przedstawiono zagadnienia związane z modelowaniem i optymalizacją generatora cech dla systemu automatycznego rozpoznawania mówcy (ang. Automatic Speaker Recognition – ASR). Etap generacji cech (parametryzacji sygnału mowy) jest fundamentalny w tego typu systemach, z uwagi na fakt, że unikatowy wektor cech ma decydujące znaczenie w procesie rozpoznawania. Zadaniem generatora cech jest opisanie sygnału mowy za pomocą możliwie mało licznego zbioru deskryptorów, bez utraty informacji istotnych z punktu widzenia rozpoznawania mówcy. Ponadto parametryzacja powinna wykazywać odporność na warunki akustyczne i techniczne rejestracji oraz na zawartość lingwistyczną rejestrowanego materiału. Badania przedstawione w referacie koncentrowały się przede wszystkim na wielokryterialnej optymalizacji wybranych parametrów generatora cech opartego na analizie cepstralnej, uwzgledniającej dodatkowo selekcję cech. Oceny otrzymanych wyników dokonano w oparciu o analizę składników głównych (ang. Principal Component Analysis – PCA) zbioru deskryptorów wyznaczonych dla próbek głosu pochodzących od 24 mówców.
Key words: automatyczne rozpoznawanie mówcy, ekstrakcja cech, selekcja cech, analiza składników głównych.