Przegląd Elektrotechniczny
tttt/div>

Oldest magazine of Polish electrician. It appears since 1919.

strona w języku polskim english page



No/VOL: 06/2024 Page no. 223

Authors: R. Padmavathi , K. Aravinda , M. Vetrivel , C. Santhana-Lakshmi , R. Satheesh-Kumar , S. Sivakumar :

Title: Skuteczne podejście do diagnostyki usterek silników elektrycznych z wykorzystaniem głębokiego uczenia się

Abstract: Silniki indukcyjne mają wszechstronne zastosowanie w różnych gałęziach przemysłu. Jednakże podczas integracji z różnymi systemami mogą być podatne na szereg awarii, takich jak pęknięte pręty i uszkodzenia międzyzwojowe. Aby ograniczyć ryzyko nieprzewidzianych awarii silnika, w badaniu wprowadzono detektor usterek oparty na sztucznej sieci neuronowej (ANN) w celu oceny powagi warunków awarii. Głównym celem jest zwiększenie niezawodności i trwałości silników indukcyjnych poprzez szybką identyfikację potencjalnych problemów. W proponowanym modelu do uczenia wykorzystano algorytm propagacji wstecznej Levenberga-Marquardta, a sieć SSN poddano testom zarówno w warunkach prawidłowego działania, jak i w pięciu odrębnych stanach usterek maszyny elektrycznej. Wyniki uzyskane w fazie eksperymentów są obiecujące i ujawniają, że zaproponowany model Topologia SSN charakteryzuje się godnym uwagi poziomem dokładności wynoszącym około 96%. Dokładność ta przewyższa dokładność istniejącej topologii, co wskazuje na znaczny postęp w zakresie możliwości wykrywania usterek.

Key words: NN, wykrywanie usterek międzyobrotowych stojana (SITF), silnik indukcyjny (IM), dokładność

wstecz