Przegląd Elektrotechniczny
tttt/div>

Oldest magazine of Polish electrician. It appears since 1919.

strona w języku polskim english page



No/VOL: 07/2023 Page no. 89

Authors: Thanpitcha Atiwanwong , Adirek Jantakun , Adisak Sangsongfa :

Title: Analiza porównawcza wartości optymalizacji między sztuczną siecią neuronową a długoterminową pamięcią dla przewidywania cząstek stałych (PM2,5) w Bangkoku w Tajlandii

Abstract: Kryzys, który niepokoi opinię publiczną, to pył zawieszony o wielkości zaledwie 2,5 mikrona, który jest niewidoczny gołym okiem, powodując ogromny brak świadomości zagrożeń dla zdrowia. Jednym z kluczowych celów i wizji przywódców rządów na całym świecie jest rozwiązanie problemu pyłu zawieszonego PM2,5, ale bez pomiarów, raportów i prognoz, w jaki sposób doprowadzi to do redukcji emisji i działań zaradczych? Dlatego prognoza PM2,5 jest uważana za główny czynnik, który pomoże zmniejszyć zanieczyszczenie PM2,5. Tak więc sieci neuronowe były szeroko stosowane w badaniach predykcyjnych, ale problem polega na tym, jaki typ sieci neuronowej byłby najbardziej odpowiedni do przewidywania wartości PM2,5? W tym badaniu porównano przewidywania między sztuczną siecią neuronową (ANN) a pamięcią długokrótkoterminową (LSTM) przy użyciu wartości zmierzonych z wynikami testu wydajności z dużą dokładnością. Wyniki pokazały, że przy różnych wartościach podobnych hiperparametrów średnia dokładność ANN wynosi 91,1460%. Średnia dokładność LSTM wynosi 96,8496%. Uzyskane z porównania wartości jednoznacznie wskazują, że do predykcji PM2,5 sieć neuronowa LSTM okazała się znacznie bardziej odpowiednia niż sieć neuronowa ANN.

Key words: Sztuczna sieć neuronowa, pamięć krótkotrwała, porównawcza sieć neuronowa

wstecz